【題目】在直角坐標(biāo)系中,已知點(diǎn),,,a的立方根,方程是關(guān)于x,y的二元一次方程,d為不等式組的最大整數(shù)解.

求點(diǎn)A、B、C的坐標(biāo);

如圖1,若Dy軸負(fù)半軸上的一個動點(diǎn),當(dāng)時,的平分線交于M點(diǎn),求的度數(shù);

如圖2,若Dy軸負(fù)半軸上的一個動點(diǎn),連BDx軸于點(diǎn)E,問是否存在點(diǎn)D,使?若存在,請求出D的縱坐標(biāo)的取值范圍;若不存在,請說明理由.

【答案】;存在,的縱坐標(biāo)的取值范圍是

【解析】

根據(jù)立方根的概念、二元一次方程組的定義、一元一次不等式組的解法分別求出a、bc、d,得到點(diǎn)A、B、C的坐標(biāo);

,根據(jù)平行線的性質(zhì)得到,得到,根據(jù)角平分線的定義得到,根據(jù)平行線的性質(zhì)計(jì)算即可;

ABy軸于F,根據(jù)題意求出點(diǎn)F的坐標(biāo),根據(jù)三角形的面積公式列出方程,解方程即可.

的立方根是,

方程是關(guān)于x,y的二元一次方程,

,

解得,,

不等式組的最大整數(shù)解是5,

、、;

,

,

,

的平分線交于M點(diǎn),

,

,

,,

,,

存在,

ABy軸于F,

設(shè)點(diǎn)D的縱坐標(biāo)為,

,即,

,,

,點(diǎn)F的坐標(biāo)為,

由題意得,,

解得,,

y軸負(fù)半軸上,

,

的縱坐標(biāo)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.

(1)試判斷四邊形AECF的形狀;

(2)若AE=BE,BAC=90°,求證:四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動課中,同學(xué)們準(zhǔn)備了一些等腰直角三角形紙片,從每張紙片中剪出一個扇形制作圓錐玩具模型.如圖,已知△ABC是腰長為4的等腰直角三角形.
(1)在等腰直角三角形ABC紙片中,以C為圓心,剪出一個面積最大的扇形(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)請求出所制作圓錐底面的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于反比例函數(shù)y= 的圖象,下列說法正確的是(
A.圖象經(jīng)過點(diǎn)(1,1)
B.兩個分支分布在第二、四象限
C.兩個分支關(guān)于x軸成軸對稱
D.當(dāng)x<0時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年金磚五國峰會將在廈門舉行,為了解我區(qū)高三年級1200名學(xué)生對本次金磚峰會的關(guān)注程度,隨機(jī)抽取了若干名高三年級學(xué)生進(jìn)行調(diào)查,按人數(shù)和關(guān)注程度,分別繪制了以下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)這次調(diào)查中,共調(diào)查名高三年級學(xué)生.
(2)如果把“特別關(guān)注”、“一般關(guān)注”都統(tǒng)計(jì)成關(guān)注,那么我區(qū)關(guān)注本次金磚峰會的高三年級學(xué)生大約有多少名?
(3)在這次調(diào)查中,有甲、乙、丙、丁四人特別關(guān)注本次金磚峰會,現(xiàn)準(zhǔn)備從四人中隨機(jī)抽取兩人為本次金磚峰會的志愿者,請用列表法或畫樹狀圖的方法求出抽取兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點(diǎn)和點(diǎn)O均在網(wǎng)格圖的格點(diǎn)上,將△ABC繞點(diǎn)O逆時針旋轉(zhuǎn)90°,得到△A1B1C1
(1)請畫出△A1B1C1;
(2)以點(diǎn)O為圓心, 為半徑作⊙O,請判斷直線AA1與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△AOB中點(diǎn)O是原點(diǎn),點(diǎn)A在y軸上,點(diǎn)B的坐標(biāo)是(2 ,2),小明做一個數(shù)學(xué)實(shí)驗(yàn),在x軸上取一動點(diǎn)C,以AC為一邊畫出等邊△ACP,移動點(diǎn)C時,探究點(diǎn)P的位置變化情況.

(1)如圖,小明將點(diǎn)C移至x軸負(fù)半軸,在AC的右側(cè)畫出等邊△ACP,并使得頂點(diǎn)P在第三象限時,連接BP,求證:△AOC≌△ABP;
(2)小明在x軸上移動點(diǎn)C,并在AC的右側(cè)畫出等邊△ACP時,發(fā)現(xiàn)點(diǎn)P在某函數(shù)圖象上,請求出點(diǎn)P所在函數(shù)圖象的解析式.
(3)小明在x軸上移動點(diǎn)C點(diǎn)時,若在AC的左側(cè)畫出等邊△ACP,點(diǎn)P會不會在某函數(shù)圖象上?若會在某函數(shù)圖象上,請直接寫出該函數(shù)圖象的解析式,若不在某函數(shù)圖象上,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,直線EFAB、CD分別相交于點(diǎn)E、F.

(1)如圖1,若∠1=120°,2=60°,求證ABCD;

(2)在(1)的情況下,若點(diǎn)P是平面內(nèi)的一個動點(diǎn),連結(jié)PE、PF,探索∠EPF、PEB、PFD三個角之間的關(guān)系;

①當(dāng)點(diǎn)P在圖2的位置時,可得∠EPF=PEB+∠PFD;

請閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式)

解:如圖2,過點(diǎn)PMNAB,

則∠EPM=PEB_____

ABCD(已知),MNAB(作圖)

MNCD_____

∴∠MPF=PFD

∴∠_____+∠_____=PEB+∠PFD(等式的性質(zhì))

即∠EPF=PEB+∠PFD

②當(dāng)點(diǎn)P在圖3的位置時,∠EPF、PEB、PFD三個角之間有何關(guān)系并證明.

③當(dāng)點(diǎn)P在圖4的位置時,請直接寫出∠EPF、PEB、PFD三個角之間的關(guān)系:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣4,0),B(2,0),與y軸交于點(diǎn)C(0,2).

(1)求拋物線的解析式;
(2)若點(diǎn)D為該拋物線上的一個動點(diǎn),且在直線AC上方,當(dāng)以A,C,D為頂點(diǎn)的三角形面積最大時,求點(diǎn)D的坐標(biāo)及此時三角形的面積.

查看答案和解析>>

同步練習(xí)冊答案