如圖,在平行四邊形ABCD中,AB=5,BC=8,AE⊥BC于點(diǎn)E,cosB=數(shù)學(xué)公式,求tan∠CDE的值.

解:在△ABE中,AE⊥BC,AB=5,cosB=
∴BE=3,AE=4.
∴EC=BC-BE=8-3=5.
∵平行四邊形ABCD,
∴CD=AB=5.
∴△CED為等腰三角形.
∴∠CDE=∠CED.
∵AD∥BC,
∴∠ADE=∠CED.
∴∠CDE=∠ADE.
在Rt△ADE中,AE=4,AD=BC=8,
∴tan∠CDE==
分析:首先由已知條件和勾股定理計算CE=5,所以CD=AB,進(jìn)而得到∠CDE=∠CED=∠ADE,所以tan∠CDE=tan∠ADE問題的解.
點(diǎn)評:本題考查了解直角三角形的運(yùn)用、勾股定理的運(yùn)用、平行四邊形的性質(zhì)和等腰三角形的判定和性質(zhì),解題的關(guān)鍵是找到圖形中相等的角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(當(dāng)點(diǎn)F運(yùn)動到點(diǎn)B時,點(diǎn)E隨之停止運(yùn)動),EM、CD精英家教網(wǎng)的延長線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
OB=
5
,則下列結(jié)論中不正確的是(  )
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊答案