【題目】出租車司機(jī)張師傅某天上午營運(yùn)全是在東西向的長江路上進(jìn)行的,如果向東為正,向西為負(fù),這天上午他行車?yán)锍蹋▎挝唬?/span>km)如下:
.
⑴.最后一名乘客送到目的地,出租車在東面還是西面?在多少千米處?
⑵.請(qǐng)你幫張師傅算一下,這天上午他一共行駛了多少里程?
⑶.若每千米耗油0.1L,則這天上午張師傅一共用了多少升油?
【答案】⑴. 西,21千米;⑵. 111千米;⑶..
【解析】
(1)將所記錄的數(shù)據(jù)相加,根據(jù)結(jié)果即可得答案;
(2)把所有的行車?yán)锍痰慕^對(duì)值相加即可得結(jié)果;
(3)用(2)中的結(jié)果乘以0.1即可得結(jié)果.
(1)(+15)+(-7)+(-14)+(+10)+(-12)+(+4)+(-15)+(+16)+(-18)
=-21,
答:最后一名乘客送到目的地,出租車在西面,距離出發(fā)地21千米處;
(2)15+7+14+10+12+4+15+16+18=111(千米),
答:這天上午他一共行駛了111千米;
(3)0.1×111=11.1(L),
答:這天上午張師傅一共用了11.1升油.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),BE=2,AE=3,P是AC上一動(dòng)點(diǎn),則PB+PE的最小值是( ).
A. 5 B. 5 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,△ADC和△BDE均為等腰三角形,∠CAD=∠DBE,AC=AD,BD=BE,連接CE,點(diǎn)G為CE的中點(diǎn),過點(diǎn)E作AC的平行線與線段AG延長線交于點(diǎn)F.
(1)當(dāng)A,D,B三點(diǎn)在同一直線上時(shí)(如圖1),求證:G為AF的中點(diǎn);
(2)將圖1中△BDE繞點(diǎn)D旋轉(zhuǎn)到圖2位置時(shí),點(diǎn)A,D,G,F(xiàn)在同一直線上,點(diǎn)H在線段AF的延長線上,且EF=EH,連接AB,BH,試判斷△ABH的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,BD是它的一條對(duì)角線,過A、C兩點(diǎn)作AE⊥BD,CF⊥BD,垂足分別為E、F,延長AE、CF分別交CD、AB于M、N.
(1)求證:四邊形CMAN是平行四邊形.
(2)已知DE=2,F(xiàn)N=1,求BN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值,
(1)2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.
(2)已知a+b=4,ab=﹣2,求代數(shù)式(4a﹣3b﹣2ab)﹣(a﹣6b﹣ab)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+3與x軸,y軸分別交于A,B兩點(diǎn),tan∠OAB= ,點(diǎn)C(x,y)是直線y=kx+3上與A,B不重合的動(dòng)點(diǎn).
(1)求直線y=kx+3的解析式;
(2)當(dāng)點(diǎn)C運(yùn)動(dòng)到什么位置時(shí)△AOC的面積是6;
(3)過點(diǎn)C的另一直線CD與y軸相交于D點(diǎn),是否存在點(diǎn)C使△BCD與△AOB相似,且△BCD的面積是△AOB的面積的 ?若存在,請(qǐng)求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CF,連接EF. 若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長為4, P、Q、R分別為邊AB、BC、AC上的動(dòng)點(diǎn),則PR+QR的最小值是 _____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com