【題目】(1)如圖,在四邊形ABCD是矩形,點(diǎn)E是AD的中點(diǎn),求證:EB=EC.

(2)如圖,AB相切于C,,⊙O的半徑為6,AB=16,求OA的長(zhǎng).

【答案】(1)見(jiàn)解析;(2)10.

【解析】

(1)利用SAS證明△ABE≌△DCE,根據(jù)全等三角形性質(zhì)即可得;

(2)連接OC,則有OC⊥AB,再根據(jù)等腰三角形的判定與性質(zhì)可得AC長(zhǎng),在直角三角形OAC中,利用勾股定理即可求得OA長(zhǎng).

(1)∵四邊形ABCD是矩形,

∴∠A=∠D=90° ,AB=DC,

∵AE=DE,

∴△ABE≌△DCE(SAS),

∴EB=EC;

(2)如圖,連接OC,

∵AB相切于C,

∴OC⊥AB,

∵∠A=∠B,

∴OA=OB,

∴AC=BC=AB=×16=8,

Rt△OAC中,OA2=OC2+AC2,

∴OA==10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)準(zhǔn)備進(jìn)一批兩種不同型號(hào)的衣服,已知購(gòu)進(jìn)A種型號(hào)衣服9件,B種型號(hào)衣服10件,則共需1810元;若購(gòu)進(jìn)A種型號(hào)衣服12件,B種型號(hào)衣服8件,共需1880元;已知銷售一件A型號(hào)衣服可獲利18元,銷售一件B型號(hào)衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號(hào)衣服不多于28件.

(1)求A、B型號(hào)衣服進(jìn)價(jià)各是多少元?

(2)若已知購(gòu)進(jìn)A型號(hào)衣服是B型號(hào)衣服的2倍還多4件,則商店在這次進(jìn)貨中可有幾種方案并簡(jiǎn)述購(gòu)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明、小華在一棟電梯樓前感慨樓房真高.小明說(shuō):這樓起碼20層!小華卻不以為然:“20層?我看沒(méi)有,數(shù)數(shù)就知道了!小明說(shuō):有本事,你不用數(shù)也能明白!小華想了想說(shuō):沒(méi)問(wèn)題!讓我們來(lái)量一量吧!小明、小華在樓體兩側(cè)各選A、B兩點(diǎn),測(cè)量數(shù)據(jù)如圖,其中矩形CDEF表示樓體,AB=150CD=10,A=30°,B=45°,(A、CD、B四點(diǎn)在同一直線上)問(wèn):

1)樓高多少米?

2)若每層樓按3計(jì)算,你支持小明還是小華的觀點(diǎn)呢?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.73,≈1.41,≈2.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一筆直的沿湖道路上有A、B兩個(gè)游船碼頭,觀光島嶼C在碼頭A北偏東60°的方向,在碼頭B北偏東15°的方向,AB=4km.

(1)求觀光島嶼C與碼頭A之間的距離(即AC的長(zhǎng));

(2)游客小明準(zhǔn)備從觀光島嶼C乘船沿湖回到碼頭A或沿CB回到碼頭B,若開(kāi)往碼頭A、B的游船速度相同,設(shè)開(kāi)往碼頭A、B所用的時(shí)間分別是t1、t2,求的值.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【問(wèn)題情境】

課外興趣小組活動(dòng)時(shí),老師提出了如下問(wèn)題:

如圖①ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.

小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:延長(zhǎng)AD至點(diǎn)E,使DEAD,連接BE.請(qǐng)根據(jù)小明的方法思考:

(1)由已知和作圖能得到ADC≌△EDB,依據(jù)是

A.SSS B.SAS C.AAS D.HL

(2)由三角形的三邊關(guān)系可求得AD的取值范圍是

解后反思:題目中出現(xiàn)中點(diǎn)”、“中線等條件,可考慮延長(zhǎng)中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形之中.

【初步運(yùn)用】

如圖②,ADABC的中線,BEACE,交ADF,且AEEF.若EF=3,EC=2,求線段BF的長(zhǎng).

【靈活運(yùn)用】

如圖③,在ABC中, A=90°,DBC中點(diǎn), DEDF,DEAB于點(diǎn)EDFAC于點(diǎn)F,連接EF.試猜想線段BE、CF、EF三者之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,有一組平行線,正方形的四個(gè)頂點(diǎn)分別在上,過(guò)點(diǎn)D且垂直于于點(diǎn)E,分別交于點(diǎn)F,G,

(1)AE=____,正方形ABCD的邊長(zhǎng)=____;

(2)如圖2,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,點(diǎn)在直線上,以為邊在的左側(cè)作菱形,使點(diǎn)分別在直線上.

寫出的函數(shù)關(guān)系并給出證明;

=30°,求菱形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式組有且只有四個(gè)整數(shù)解,又關(guān)于x的分式方程﹣2=有正數(shù)解,則滿足條件的整數(shù)k的和為( 。

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知OD=OC,添加下列四個(gè)條件中的一個(gè),仍不能得到ODAOCB全等的是(

A.D=CB.OA=OBC.BD=ACD.AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°,AB=10cmBC=6cm,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始出發(fā),按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒2cm,設(shè)出發(fā)的時(shí)間為t秒.

1)填空:AC= cm;

2)若點(diǎn)P恰好在∠ABC的角平分線上,求t的值;

3)當(dāng)t為何值時(shí),BPC為等腰三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案