【題目】如圖,已知OD=OC,添加下列四個條件中的一個,仍不能得到ODAOCB全等的是(

A.D=CB.OA=OBC.BD=ACD.AD=BC

【答案】D

【解析】

三角形全等條件中必須是三個元素,并且一定有一組對應(yīng)邊相等.在△ODA與△OCB中,已知OD=OC,公共角∠O,因此只需添加一組對應(yīng)角相等或OA=OB即可判定兩三角形全等.

解:已知OD=OC,公共角∠O,,
A、如添加∠D=C,利用ASA即可證明△ODA≌△OCB;
B、如添加OA=OB,利用SAS即可證明△ODA≌△OCB
C、如添加BD=AC,因?yàn)?/span>OD=OC,則OA=OB,利用SAS能證明△ODA≌△OCB;
D、如添AD=BC,因?yàn)?/span>SSA,不能證明△ODA≌△OCB,所以此選項不能作為添加的條件.
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在ABC中,BO,CO分別平分∠ABC,ACB,交于O,CE為外角∠ACD的平分線,BO的延長線交CE于點(diǎn)E,記∠BAC=1,BEC=2,則以下結(jié)論①∠1=22,②∠BOC=32,③∠BOC=90°+1,④∠BOC=90°+2正確的是( 。

A. ①②③ B. ①③④ C. ①④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在四邊形ABCD是矩形,點(diǎn)E是AD的中點(diǎn),求證:EB=EC.

(2)如圖,AB相切于C,,⊙O的半徑為6,AB=16,求OA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線AB∥CD

1)如圖1,直接寫出∠ABE,∠CDE∠BED之間的數(shù)量關(guān)系是   

2)如圖2,BF,DF分別平分∠ABE,∠CDE,那么∠BFD∠BED有怎樣的數(shù)量關(guān)系?請說明理由.

3)如圖3,點(diǎn)E在直線BD的右側(cè),BF,DF仍平分∠ABE∠CDE,請直接寫出∠BFD∠BED的數(shù)量關(guān)系   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或列方程組解應(yīng)用題.

老京張鐵路是1909年由“中國鐵路之父”詹天佑主持設(shè)計建造的中國第一條干線鐵路,全長約210千米,用“人”字形鐵軌鋪筑的方式解決了火車上山的問題.京張高鐵是2022年北京至張家口冬奧會的重點(diǎn)配套交通基礎(chǔ)設(shè)施,全長約175千米,預(yù)計2019年底建成通車.京張高鐵的預(yù)設(shè)平均速度將是老京張鐵路的5倍,可以提前5個小時到達(dá),求京張高鐵的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)DAB的中點(diǎn),點(diǎn)EAB邊上一點(diǎn).

1)直線BF垂直于直線CE于點(diǎn)F,交CD于點(diǎn)G(如圖1),求證:AE=CG;

2)直線AH垂直于直線CE,垂足為點(diǎn)H,交CD的延長線于點(diǎn)M(如圖2),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=CB,∠ABC=90°,ECB延長線上一點(diǎn),點(diǎn)FAB上,且AE=CF

1)求證:Rt△ABE≌Rt△CBF;

2)若∠CAE=60°,求∠ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對稱軸為直線,下列結(jié)論:①;;;④當(dāng)時, 的增大而增大.其中正確的結(jié)論有(  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,△ABC各頂點(diǎn)的橫、縱坐標(biāo)都是整數(shù),

(1)寫出△ABC各頂點(diǎn)的坐標(biāo);

(2)作出△ABC關(guān)于x軸對稱的圖形△A1B1C1;

(3)寫出△A1B1C1的各頂點(diǎn)關(guān)于y軸對稱點(diǎn)A2,B2,C2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案