【題目】在平行四邊形ABCD中,∠BAD的平分線交線段BC于點(diǎn)E,交線段DC的延長(zhǎng)線于點(diǎn)F,以EC、CF為鄰邊作平行四邊形ECFG.
(1)如圖1,證明平行四邊形ECFG為菱形;
(2)如圖2,若∠ABC=90°,M是EF的中點(diǎn),求∠BDM的度數(shù);
(3)如圖3,若∠ABC=120°,請(qǐng)直接寫出∠BDG的度數(shù).
【答案】(1)證明見(jiàn)解析;
(2)∠BDM的度數(shù)為45°;
(3)∠BDG的度數(shù)為60°.
【解析】試題分析:(1)平行四邊形的性質(zhì)可得AD∥BC,AB∥CD,再根據(jù)平行線的性質(zhì)證明∠CEF=∠CFE,根據(jù)等角對(duì)等邊可得CE=CF,再有條件四邊形ECFG是平行四邊形,可得四邊形ECFG為菱形;
(2)首先證明四邊形ECFG為正方形,再證明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根據(jù)∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到∠BDM的度數(shù);
(3)延長(zhǎng)AB、FG交于H,連接HD,求證平行四邊形AHFD為菱形,得出△ADH,△DHF為全等的等邊三角形,證明△BHD≌△GFD,即可得出答案.
試題解析:(1)∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
又∵四邊形ECFG是平行四邊形,
∴四邊形ECFG為菱形.
(2)如圖,連接BM,MC,
∵∠ABC=90°,四邊形ABCD是平行四邊形,
∴四邊形ABCD是矩形,
又由(1)可知四邊形ECFG為菱形,
∠ECF=90°,
∴四邊形ECFG為正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC,
∵M為EF中點(diǎn),
∴∠CEM=∠ECM=45°,
∴∠BEM=∠DCM=135°,
在△BME和△DMC中,
∵
∴△BME≌△DMC(SAS),
∴MB=MD,
∠DMC=∠BME.
∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
∴△BMD是等腰直角三角形,
∴∠BDM=45°;
(3)∠BDG=60°,
延長(zhǎng)AB、FG交于H,連接HD.
∵AD∥GF,AB∥DF,
∴四邊形AHFD為平行四邊形,
∵∠ABC=120°,AF平分∠BAD,
∴∠DAF=30°,∠ADC=120°,∠DFA=30°,
∴△DAF為等腰三角形,
∴AD=DF,
∴平行四邊形AHFD為菱形,
∴△ADH,△DHF為全等的等邊三角形,
∴DH=DF,∠BHD=∠GFD=60°,
∵FG=CE,CE=CF,CF=BH,
∴BH=GF,
在△BHD與△GFD中,
∵,
∴△BHD≌△GFD(SAS),
∴∠BDH=∠GDF
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【背景】已知:l∥m∥n∥k,平行線l與m、m與n、n與k之間的距離分別為d1,d2,d3,且d1=d3=1,d2=2.我們把四個(gè)頂點(diǎn)分別在l,m,n,k這四條平行線上的四邊形稱為“格線四邊形” .
【探究1】(1)如圖1,正方形ABCD為“格線四邊形”,BE⊥l于點(diǎn)E,BE的反向延長(zhǎng)線交直線k于點(diǎn)F.求正方形ABCD的邊長(zhǎng).
【探究2】(2)如圖2,菱形ABCD為“格線四邊形”且∠ADC=60°,△AEF是等邊三角形,AE⊥k于點(diǎn)E,∠AFD=90°,直線DF分別交直線l,k于點(diǎn)G、點(diǎn)M.求證:EC=DF.
【拓展】(3)如圖3,l∥k,等邊△ABC的頂點(diǎn)A,B分別落在直線l,k上,AB⊥k于點(diǎn)B,且∠ACD=90°,直線CD分別交直線l、k于點(diǎn)G、點(diǎn)M,點(diǎn)D、點(diǎn)E分別是線段GM、BM上的動(dòng)點(diǎn),且始終保持AD=AE,DH⊥l于點(diǎn)H.猜想:DH在什么范圍內(nèi),BC∥DE?并說(shuō)明此時(shí)BC∥DE的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)為軸負(fù)半軸上一點(diǎn),點(diǎn)為軸正半軸上一點(diǎn),,,其中,滿足關(guān)系式:+.
(1)= ,= ,△的面積為 ;
(2)如圖2,若⊥,點(diǎn)線段上一點(diǎn),連接,延長(zhǎng)交于點(diǎn),當(dāng)∠=∠時(shí),求證:平分∠;
(3)如圖3,若⊥,點(diǎn)是點(diǎn)與點(diǎn)之間一動(dòng)點(diǎn),連接,始終平分∠,當(dāng)點(diǎn)在點(diǎn)與點(diǎn)之間運(yùn)動(dòng)時(shí),的值是否變化?若不變,求出其值;若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒,
(1)求幾秒后,△PBQ的面積等于6cm2?
(2)求幾秒后,PQ的長(zhǎng)度等于5cm?
(3)運(yùn)動(dòng)過(guò)程中,△PQB的面積能否等于8cm2?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓桌面(桌面中間有一個(gè)直徑為0.4m的圓洞)正上方的燈泡(看作一個(gè)點(diǎn))發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是( )
A. 0.324πm2 B. 0.288πm2 C. 1.08πm2 D. 0.72πm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn)A(x1,y1)B (x2,y2),規(guī)定運(yùn)算:
(1)A⊕B=(x1+x2,y1+y2);
(2)A⊙B=x1x2+y1y2;
(3)當(dāng)x1=x2且y1=y2時(shí),A=B.
有下列四個(gè)命題:
①若有A(1,2),B(2,﹣1),則A⊕B=(3,1),A⊙B=0;
②若有A⊕B=B⊕C,則A=C;
③若有A⊙B=B⊙C,則A=C;
④(A⊕B)⊕C=A⊕(B⊕C)對(duì)任意點(diǎn)A、B、C均成立.
其中正確的命題為______(只填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩名同學(xué)在調(diào)查時(shí)使用下面兩種提問(wèn)方式,你認(rèn)為哪一種更好些( )
A. 難道你不認(rèn)為科幻片比武打片更有意思嗎?
B. 你更喜歡哪一類電影 ——科幻片還是武打片?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com