【題目】已知如圖,AOBC,DOOE.

(1)不添加其他條件情況下,請盡可能多地寫出圖中有關(guān)角的等量關(guān)系(至少3個);

(2)如果∠COE 350,求∠BOD的度數(shù).

【答案】(1)COEAOD,AOEBOD,AOBDOE;(2)BOD=550

【解析】

(1)已知AO⊥BC,DO⊥OE,就是已知∠DOE=∠AOB=∠AOC=90°,利用同角或等角的余角相等,從而得到相等的角.
(2)由(1)知,∠AOD=∠EOC,故可求解.

1)∵AO⊥BC,DO⊥OE,
∴∠DOE=∠AOB=∠AOC=90°,∠BOD+∠AOD=90°,∠AOD+∠AOE=90°,∠AOE+∠COE=90°,
∴∠DOA=∠EOC,∠DOB=∠AOE,∠AOB=∠AOC,∠AOB=∠DOE,∠AOC=∠DOE;

(2)AOBC,DOOE

∴∠BOD1800COE 90350550

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別延長□ABCD的邊CD,ABE,F,使DE=BF,連接EF,分別交AD,BCG,H,連結(jié)CG,AH.

求證:CG∥AH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AOB是一條直線,OC是∠AOD的平分線,OE 是∠BOD的平分線.

1)若∠AOE=140°,求∠AOC的度數(shù);

2)若∠EOD :∠COD=2 : 3,求∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上一點(diǎn),且

.動點(diǎn)P從點(diǎn)A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向左勻速運(yùn)動,設(shè)運(yùn)動時間為t)秒.

(1)請寫出數(shù)軸上點(diǎn)B表示的數(shù)    ,點(diǎn)P表示的數(shù)    (用含t 的整式表示);

(2)若MAP的中點(diǎn),NPB的中點(diǎn).點(diǎn)P在運(yùn)動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC紙片中,∠ACB=90°,AC=6,BC=8,PAB邊上一點(diǎn),連接CP.沿CPRtABC紙片裁開,要使ACP是等腰三角形,那么AP的長度是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面我們做一次折疊活動

第一步,在一張寬為2的矩形紙片的一端利用圖(1)的方法折出一個正方形,然后把紙片展平,折痕為MC;

第二步,如圖(2),把這個正方形折成兩個相等的矩形,再把紙片展平折痕為FA;

第三步,折出內(nèi)側(cè)矩形FACB的對角線AB,并將AB折到圖(3)中所示的AD折痕為AQ

根據(jù)以上的操作過程,完成下列問題

1)求CD的長

2)請判斷四邊形ABQD的形狀,并說明你的理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小英在周末和爸爸媽媽以及爺爺奶奶一行6人,自駕外出旅游,出發(fā)前油箱里有油5升,在加油站加140元的油.已知油價是7/升,目的地距離出發(fā)地320千米,正常行駛時,車子的耗油情況是0.42/千米.

(1)在加油站加油 升;車子的耗油情況換算成 /千米.

(2)在行駛過程中,設(shè)油箱內(nèi)余油y(),行駛路程x(千米),將y表示為x的函數(shù).

(3)若油箱里余油量低于5升會自動報警,通過計算回答,小明他們在到達(dá)目的地之前,車子是否會自動報警

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD內(nèi)有一折線段,其中AE丄EF,EF丄FC,并且AE=3,EF=4,F(xiàn)C=5,則正方形ABCD的外接圓的半徑是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ADC=EFC,3=C,可推得∠1=2.理由如下:

解:因為∠ADC=EFC(已知)

所以ADEF(   ).

所以∠1=4(   ),

因為∠3=C(已知),

所以ACDG(   ).

所以∠2=4(   ).

所以∠1=2(等量代換).

查看答案和解析>>

同步練習(xí)冊答案