精英家教網(wǎng)如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點(diǎn)C是
AB
上異于A、B的動(dòng)點(diǎn),過點(diǎn)C作CD⊥OA于點(diǎn)D,作CE⊥OB于點(diǎn)E,連接DE,點(diǎn)G、H在線段DE上,且DG=GH=HE
(1)求證:四邊形OGCH是平行四邊形.
(2)當(dāng)點(diǎn)C在
AB
上運(yùn)動(dòng)時(shí),在CD、CG、DG中,是否存在長度不變的線段?若存在,請(qǐng)求出該線段的長度.
分析:(1)連接OC交DE于M,證矩形OECD,推出MC=MO,MG=MH即可;
(2)求出OC=DE=3,即可求出答案.
解答:解:(1)連接OC交DE于M,
∵CE⊥OB,CD⊥OA,∠BOA=90°,
∴∠CEO=∠BOA=∠CDO=90°,
∴四邊形CEOD是矩形,
∴OM=CM,EM=DM,
∵EH=DG,
∴EM-EH=DM-DG,精英家教網(wǎng)
即HM=GM,
∴四邊形OGCH是平行四邊形.

(2)DG不變.
在矩形ODCE中,∵DE=OC=3,
∵DG=GH=EH,
∴DG=
1
3
DE=
1
3
OC=1,
答:DG的長不變,DG=1.
點(diǎn)評(píng):本題主要考查對(duì)矩形、平行四邊形的性質(zhì)和判定的理解和掌握,能求出MC=MO和MH=MG是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

正方形OCED與扇形OAB有公共頂點(diǎn)0,分別以O(shè)A,0B所在直線為x軸,y軸建立平面直角坐標(biāo)系.如圖所示.正方形兩個(gè)頂點(diǎn)C、D分別在x軸、y軸正半軸上移動(dòng).設(shè)OC=x,OA=3
(1)當(dāng)x=1時(shí),正方形與扇形不重合的面積是
 
;此時(shí)直線CD對(duì)應(yīng)的函數(shù)關(guān)系式精英家教網(wǎng)
 

(2)當(dāng)直線CD與扇形OAB相切時(shí).求直線CD對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)當(dāng)正方形有頂點(diǎn)恰好落在
AB
上時(shí),求正方形與扇形不重合的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

正方形OCED與扇形OAB有公共頂點(diǎn)O,分別以O(shè)A、OB所在直線為x軸,y軸建立平面直角坐精英家教網(wǎng)標(biāo)系.如圖所示、正方形兩個(gè)頂點(diǎn)C、D分別在x軸、y軸正半軸上移動(dòng)、設(shè)OC=x,OA=3,則:
(1)當(dāng)x=1時(shí),正方形與扇形不重合的面積是
 
;
(2)當(dāng)x=
 
時(shí),直線CD與扇形OAB相切,此時(shí)切點(diǎn)坐標(biāo)是
 
;
(3)當(dāng)正方形有頂點(diǎn)恰好落在AB上時(shí),求正方形與扇形不重合的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

正方形OCED與扇形OAB有公共頂點(diǎn)0,分別以O(shè)A,0B所在直線為x軸,y軸建立平面直角坐標(biāo)系.如圖所示.正方形兩個(gè)頂點(diǎn)C、D分別在x軸、y軸正半軸上移動(dòng).設(shè)OC=x,OA=3
(1)當(dāng)x=1時(shí),正方形與扇形不重合的面積是______;此時(shí)直線CD對(duì)應(yīng)的函數(shù)關(guān)系式是______;
(2)當(dāng)直線CD與扇形OAB相切時(shí).求直線CD對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)當(dāng)正方形有頂點(diǎn)恰好落在數(shù)學(xué)公式上時(shí),求正方形與扇形不重合的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》中考題集(81):3.4 弧長和扇形的面積,圓錐的側(cè)面展開圖(解析版) 題型:解答題

正方形OCED與扇形OAB有公共頂點(diǎn)0,分別以O(shè)A,0B所在直線為x軸,y軸建立平面直角坐標(biāo)系.如圖所示.正方形兩個(gè)頂點(diǎn)C、D分別在x軸、y軸正半軸上移動(dòng).設(shè)OC=x,OA=3
(1)當(dāng)x=1時(shí),正方形與扇形不重合的面積是______;此時(shí)直線CD對(duì)應(yīng)的函數(shù)關(guān)系式是______;
(2)當(dāng)直線CD與扇形OAB相切時(shí).求直線CD對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)當(dāng)正方形有頂點(diǎn)恰好落在上時(shí),求正方形與扇形不重合的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年福建省福州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•福州)正方形OCED與扇形OAB有公共頂點(diǎn)0,分別以O(shè)A,0B所在直線為x軸,y軸建立平面直角坐標(biāo)系.如圖所示.正方形兩個(gè)頂點(diǎn)C、D分別在x軸、y軸正半軸上移動(dòng).設(shè)OC=x,OA=3
(1)當(dāng)x=1時(shí),正方形與扇形不重合的面積是______;此時(shí)直線CD對(duì)應(yīng)的函數(shù)關(guān)系式是______;
(2)當(dāng)直線CD與扇形OAB相切時(shí).求直線CD對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)當(dāng)正方形有頂點(diǎn)恰好落在上時(shí),求正方形與扇形不重合的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案