拋物線y=x2-2x-3的頂點坐標是    ,與x軸兩交點間的距離為   
【答案】分析:利用配方法將二次函數(shù)配方,得出頂點式形式,即可得出頂點坐標,當y=0,即可得出與x軸交點坐標.
解答:解:y=x2-2x-3=x2-2x+1-1-3=(x-1)2-4,
∵拋物線開口向上,當x=1時,y最小=-4,
∴頂點坐標是:(1,-4),
∵與x軸相交時y=0,
∴x2-2x-3=0,
解得:x1=3,x2=-1,
∴與x軸兩交點間的距離為:3-(-1)=4.
故答案為:(1,-4),4.
點評:此題主要考查了配方法求二次函數(shù)頂點坐標以及與x軸交點求法,根據(jù)題意正確的將二次函數(shù)進行配方是解決問題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

拋物線y=x2+2x-2的圖象上最低點的坐標是(  )
A、(2,-2)B、(1,-2)C、(1,-3)D、(-1,-3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

43、將拋物線y=x2+2x-3向左平移4個單位,再向下平移3個單位,所得拋物線的函數(shù)表達式為
y=x2+10x+18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若拋物線y=x2+2x-1上有兩點A、B,且原點位于線段AB的三等分點處,則這兩點的坐標為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖.拋物線y=-x2-2x+3與x軸相交于點A和點B,與y軸交于點C.
(1)求點A、點B和點C的坐標.
(2)求直線AC的解析式.
(3)設點M是第二象限內(nèi)拋物線上的一點,且S△MAB=6,求點M的坐標.
(4)若點P在線段BA上以每秒1個單位長度的速度從 B 向A運動(不與B,A重合),同時,點Q在射線AC上以每秒2個單位長度的速度從A向C運動.設運動的時間為t精英家教網(wǎng)秒,請求出△APQ的面積S與t的函數(shù)關(guān)系式,并求出當t為何值時,△APQ的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2+2x-3與x軸的一個交點為(a,0),則代數(shù)式a2+2a+2006的值為( 。

查看答案和解析>>

同步練習冊答案