【題目】河上有一座橋孔為拋物線形的拱橋(如圖 ),水面寬 時,水面離橋孔頂部 ,因降暴雨水面上升 .
(1)建立適當(dāng)?shù)淖鴺?biāo)系,并求暴雨后水面的寬;(結(jié)果保留根號)
(2)一艘裝滿物資的小船,露出水面的部分高為 ,寬 (橫斷面如圖 所示),暴雨后這艘船能從這座拱橋下通過嗎?
【答案】(1)水面寬為 米;(2)這艘船能從這座拱橋下通過.
【解析】試題分析:
(1)建立如下圖所示的平面直角坐標(biāo)系,由題意設(shè)拋物線型拱橋的解析式為:y=ax2,由題意可知此拋物線過點(diǎn)(3,-3),由此即可求出拋物線的解析式,把y=-2代入所得解析式,解此對應(yīng)的x的值,即可求得此時水面的寬;
(2)由題意在(1)中所得的解析式中,求出當(dāng)x=2時對應(yīng)的y的值,比較此時y的值的絕對值和1.5的大小即可得出結(jié)論.
試題解析:
(1) 如圖,以拋物線的頂點(diǎn)為原點(diǎn),以橋面為 軸,建立平面直角坐標(biāo)系,由題意可知拋物線過點(diǎn) ,
設(shè)拋物線的函數(shù)表達(dá)式為: .
把 代入 ,可求 ,
則拋物線對應(yīng)的函數(shù)表達(dá)式為 .
當(dāng)水面上漲 米后,水面所在的位置為直線 ,
令 得,則,解得: , ,
∴此時水面寬為為: (米);
(2)由題意 :當(dāng)船在橋拱的正中心航行時,船的邊緣距拋物線對稱軸水平距離為 米,在中,令 得, ,
∵船上貨物最高點(diǎn)距拱頂為: (米)且 ,
∴這艘船能從這座拱橋下通過.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮兩同學(xué)做游戲,游戲規(guī)則是:有一個不透明的盒子,里面裝有兩張紅卡片,兩張綠卡片,卡片除顏色外其它均相同,兩人先后從盒子中取出一張卡片(不放回),若兩人所取卡片的顏色相同,則小明獲勝,否則小亮獲勝.
(1)請用畫樹狀圖或列表法列出游戲所有可能的結(jié)果;
(2)請根據(jù)你的計(jì)算結(jié)果說明游戲是否公平,若不公平,你認(rèn)為對誰有利?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點(diǎn),點(diǎn)E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是用8個大小相同的小正方體搭成的幾何體,僅在該幾何體中取走一塊小正方體,使得到的新幾何體同時滿足兩個要求:(1)從正面看到的形狀和原幾何體從正面看到的形狀相同;(2)從左面看到的形狀和原幾何體從左面看到的形狀也相同.在不改變其它小正方體位置的前提下,可取走的小正方體的標(biāo)號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點(diǎn)P由B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動,速度為1cm/s;點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動,速度為2cm/s;連接PQ.若設(shè)運(yùn)動的時間為t(s)(0<t<4),解答下列問題:
(1)當(dāng)t為何值時,PQ∥BC;
(2)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻t,使四邊形PQP′C為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知△ABC中,∠ACB=90°,CA=CB,點(diǎn)D,E分別在CB,CA上,且CD=CE,連AD,BE,F為AD的中點(diǎn),連CF.
(1)求證:CF=BE,且CF⊥BE;
(2)將△CDE繞點(diǎn)C順時針旋轉(zhuǎn)一個銳角(如圖2),其它條件不變,此時(1)中的結(jié)論是否仍成立?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線,若∠ADB是直角,求證:四邊形BFDE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線上有A、B兩個觀測點(diǎn),B在A的正東方向,AB=4km.從A測得燈塔C在北偏東53°方向上,從B測得燈塔C在北偏西45°方向上,求燈塔C與觀測點(diǎn)A的距離(精確到0.1km).(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“鐵路建設(shè)助推經(jīng)濟(jì)發(fā)展”,近年來我國政府十分重視鐵路建設(shè).渝利鐵路通車后,從重慶到上海比原鐵路全程縮短了320千米,列車設(shè)計(jì)運(yùn)行時速比原鐵路設(shè)計(jì)運(yùn)行時速提高了120千米/小時,全程設(shè)計(jì)運(yùn)行時間只需8小時,比原鐵路設(shè)計(jì)運(yùn)行時間少用16小時.
(1)渝利鐵路通車后,重慶到上海的列車設(shè)計(jì)運(yùn)行里程是多少千米?
(2)專家建議:從安全的角度考慮,實(shí)際運(yùn)行時速減少m%,以便于有充分時間應(yīng)對突發(fā)事件,這樣,從重慶到上海的實(shí)際運(yùn)行時間將增加m%小時,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com