如圖,⊙O的半徑為2,點(diǎn)A為⊙O上一點(diǎn),OD⊥弦BC于點(diǎn)D,OD=1,則∠BAC的度數(shù)是( )

A.55°
B.60°
C.65°
D.70°
【答案】分析:首先連接OB,由OD⊥BC,根據(jù)垂徑定理,可得∠BOC=2∠DOC,又由OD=1,⊙O的半徑為2,易求得∠DOC的度數(shù),然后由勾股定理求得∠BAC的度數(shù).
解答:解:連接OB,
∵OD⊥BC,
∴∠ODC=90°,
∵OC=2,OD=1,
∴cos∠COD==,
∴∠COD=60°,
∵OB=OC,OD⊥BC,
∴∠BOC=2∠DOC=120°,
∴∠BAC=∠BOC=60°.
故選B.
點(diǎn)評(píng):此題考查了圓周角定理、垂徑定理以及特殊角的三角函數(shù)值.此題難度不大,注意數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點(diǎn),則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點(diǎn)F是BC的中點(diǎn),那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標(biāo)原點(diǎn)重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為格點(diǎn),則⊙O上格點(diǎn)有
 
個(gè),設(shè)L為經(jīng)過⊙O上任意兩個(gè)格點(diǎn)的直線,則直線L同時(shí)經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點(diǎn),且MP:PN=1:2.若PA=2,則MN的長(zhǎng)為
6
2
6
2

查看答案和解析>>

同步練習(xí)冊(cè)答案