【題目】已知,以為直徑的⊙分別交于點(diǎn),于點(diǎn),連接,若.
(1)求證:;
(2)若,,求的長.
【答案】(1)證明見解析;(2)
【解析】
(1)由等腰三角形的性質(zhì)得到∠EDC=∠C,由圓內(nèi)接四邊形的性質(zhì)得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可證得結(jié)論;
(2)連接AE,由AB為直徑,可證得AE⊥BC,由(1)知AB=AC,證明△CDE∽△CBA后即可求得CD的長.
(1)證明:∵ED=EC,
∴∠EDC=∠C,
∵∠EDC=∠B,(∵∠EDC+∠ADE=180°,∠B+∠ADE=180°,∴∠EDC=∠B)
∴∠B=∠C,
∴AB=AC;
(2)如圖所示,連接AE,
∵AB為直徑,
∴AE⊥BC,
由(1)知AB=AC,
∴BE=CE=BC=,
∵△CDE∽△CBA,
∴,
∴CECB=CDCA,AC=AB=4,
∴,
∴CD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)興趣小組活動(dòng)中,小明進(jìn)行數(shù)學(xué)探究活動(dòng).將大小不同的正方形與正方形按圖1位置放置,與在同一條直線上,與在同一條直線上.
(1)小明發(fā)現(xiàn)且,請你給出證明;
(2)如圖2,小明將正方形繞點(diǎn)轉(zhuǎn)動(dòng),當(dāng)點(diǎn)恰好落在線段上時(shí)猜想線段和的位置關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,BC=4,將矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到矩形A'B'C'D',此時(shí)點(diǎn)B'恰好落在邊AD上.
(1)畫出旋轉(zhuǎn)后的圖形;
(2)連接B'B,若∠AB'B=75°,求旋轉(zhuǎn)角及AB長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,是直角三角形,,點(diǎn)、的橫坐標(biāo)是一元二次方程的兩根(),直線與軸交于,點(diǎn)的坐標(biāo)為.
(1)求直線的函數(shù)表達(dá)式;
(2)在軸上找一點(diǎn),連接,使得以點(diǎn)、、為頂點(diǎn)的三角形與相似(不包括全等),并求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,點(diǎn)、分別是和上的動(dòng)點(diǎn),連接,點(diǎn)、分別從、同時(shí)出發(fā),以每秒1個(gè)單位長度的速度運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),兩點(diǎn)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,請直接寫出幾秒時(shí)以點(diǎn)、、為頂點(diǎn)的三角形與相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,直線交坐標(biāo)軸于A、B兩點(diǎn),過點(diǎn)C(,0)作CD交AB于D,交軸于點(diǎn)E.且△COE≌△BOA.
(1)求B點(diǎn)坐標(biāo)為 ;線段OA的長為 ;
(2)確定直線CD解析式,求出點(diǎn)D坐標(biāo);
(3)如圖2,點(diǎn)M是線段CE上一動(dòng)點(diǎn)(不與點(diǎn)C、E重合),ON⊥OM交AB于點(diǎn)N,連接MN.
①點(diǎn)M移動(dòng)過程中,線段OM與ON數(shù)量關(guān)系是否不變,并證明;
②當(dāng)△OMN面積最小時(shí),求點(diǎn)M的坐標(biāo)和△OMN面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,是上一點(diǎn),連接、.為弧中點(diǎn),過點(diǎn)作,垂足為,交于點(diǎn),,交的延長線于點(diǎn).
(1)求證:是的切線;
(2)若,且,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點(diǎn)D、E,過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)若⊙O的半徑為3,∠CDF=15°,求陰影部分的面積;
(2)求證:DF是⊙O的切線;
(3)求證:∠EDF=∠DAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與拋物線y=ax2﹣4ax+3a的對(duì)稱軸交于點(diǎn)A(m,﹣1),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)恰為拋物線的頂點(diǎn).
(1)求拋物線的對(duì)稱軸及a的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記直線y=kx+b(k≠0)與拋物線圍成的封閉區(qū)域(不含邊界)為W.
①當(dāng)k=1時(shí),直接寫出區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù);
②若區(qū)域W內(nèi)恰有3個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店用1000元人民幣購進(jìn)某種水果銷售,過了一周時(shí)間,又用2400元人民幣購進(jìn)這種水果,所購數(shù)量是第一次購進(jìn)數(shù)量的2倍,但每千克的價(jià)格比第一次購進(jìn)的價(jià)格貴了2元.
(1)該商店第一次購進(jìn)這種水果多少千克?
(2)假設(shè)該商店兩次購進(jìn)的這種水果按相同的標(biāo)價(jià)銷售,最后剩下的20千克按標(biāo)價(jià)的五折優(yōu)惠銷售.若兩次購進(jìn)的這種水果全部售完,利潤不低于1240元,則每千克這種水果的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com