【題目】如圖,等腰Rt△ABC的直角邊AB=2,點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),以相等的速度作直線運(yùn)動,已知點(diǎn)P沿射線AB運(yùn)動,點(diǎn)Q沿邊BC的延長線運(yùn)動,PQ與直線相交于點(diǎn)D.
(1)設(shè)AP的長為x,△PCQ的面積為S,求出S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)AP的長為何值時(shí),=.
【答案】(1)S=;(2)當(dāng)AP=1+時(shí),=.
【解析】
(1)本題要分兩種情況進(jìn)行討論:
①當(dāng)P在線段AB上;②當(dāng)P在AB延長線上.
△PCQ都是以CQ為底,PB為高,可據(jù)此得出S、x的函數(shù)關(guān)系式.
(2)先計(jì)算出△ABC的面積,然后將其值代入(1)中得出的兩個(gè)函數(shù)式中,即可得出所求的AP的長.
解(1) 解:(1)①當(dāng)點(diǎn)P在線段AB上時(shí),S△PCQ=CQPB.
∵AP=CQ=x,PB=2-x.
∴S△PCQ=x(2-x).
即S=(2x-x2);
②當(dāng)點(diǎn)P在AB延長線上時(shí),S△PCQ=CQPB.
∵AP=CQ=x,PB=x-2.
∴S△PCQ=x(x-2).
即S=(x2-2x)(x>2);
∴S=;
(2)由題意得SABC=×2×2=2
當(dāng)=2時(shí),
,原方程無解;
=2時(shí)
=1+,=1-(舍去)
∴AP=1+
所以當(dāng)AP=1+時(shí),=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某淘寶網(wǎng)店銷售臺燈,成本為每個(gè)30元.銷售大數(shù)據(jù)分析表明:當(dāng)每個(gè)臺燈售價(jià)為40元時(shí),平均每月售出600個(gè);若售價(jià)每下降1元,其月銷售量就增加200個(gè).
(1)若售價(jià)下降1元,每月能售出 個(gè)臺燈,若售價(jià)下降x元(),每月能售出 個(gè)臺燈.
(2)為迎接“雙十一”,該網(wǎng)店決定降價(jià)促銷,在庫存為1210個(gè)臺燈的情況下,若預(yù)計(jì)月獲利恰好為8400元,求每個(gè)臺燈的售價(jià).
(3)月獲利能否達(dá)到9600元,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動點(diǎn),過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)若CE=8,CF=6,求OC的長;
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動到什么位置時(shí),四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形AOBC,A(0,3)、B(6,0),點(diǎn)E在OB上,∠AEO=30°,點(diǎn)P從點(diǎn)Q(﹣4,0)出發(fā),沿x軸向右以每秒1個(gè)單位長的速度運(yùn)動,運(yùn)動時(shí)間為t秒.
(1)求點(diǎn)E的坐標(biāo);
(2)當(dāng)△PAE是等腰三角形時(shí),求t的值;
(3)以點(diǎn)P為圓心,PA為半徑的⊙P隨點(diǎn)P的運(yùn)動而變化,當(dāng)⊙P與四邊形AEBC的邊(或邊所在的直線)相切時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=-x2+4交x軸于A,B兩點(diǎn),頂點(diǎn)是C.
(1)求△ABC的面積;
(2)若點(diǎn)P在拋物線y=-x2+4上, 且S△PAB= S△ABC,求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中間用相同的白色正方形瓷磚,四周用相同的黑色長方形瓷磚鋪設(shè)矩形地面,請觀察圖形并解答下列問題.
(1)問:依據(jù)規(guī)律在第6個(gè)圖中,黑色瓷磚多少塊,白色瓷磚有多少塊;
(2)某新學(xué)校教室要裝修,每間教室面積為68m2 , 準(zhǔn)備定制邊長為0.5米的正方形白色瓷磚和長為0.5米、寬為0.25米的長方形黑色瓷磚來鋪地面.按照此圖案方式進(jìn)行裝修,瓷磚無須切割,恰好完成鋪設(shè).已知白色瓷磚每塊20元,黑色瓷磚每塊10元,請問每間教室瓷磚共需要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(x1,y1),B(x2,y2)是二次函數(shù)上y=ax2-2ax+a-c(a≠0)的兩點(diǎn),若x1≠x2,且y1=y2,則當(dāng) 自變量x的值取x1+x2時(shí),函數(shù)值為( )
A. -cB. cC. -a+cD. a-c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,邊AB、BC的長(AB<BC)是方程x2﹣7x+12=0的兩個(gè)根.點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿△ABC邊 A→B→C→A的方向運(yùn)動,運(yùn)動時(shí)間為t(秒).
(1)求AB與BC的長;
(2)當(dāng)點(diǎn)P運(yùn)動到邊BC上時(shí),試求出使AP長為時(shí)運(yùn)動時(shí)間t的值;
(3)當(dāng)點(diǎn)P運(yùn)動到邊AC上時(shí),是否存在點(diǎn)P,使△CDP是等腰三角形?若存在,請求出運(yùn)動時(shí)間t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com