(1)分別求出當(dāng)a=3,b=2和a=-3,b=2時,代數(shù)式a2-2ab+b2和(a-b)2的值各是多少?
(2)由(1)可以猜想出什么結(jié)論?
(3)利用(2)的結(jié)論計算(25.9)2-2×25.9×5.9+(5.9)2

解:(1)當(dāng)a=3,b=2時,a2-2ab+b2=32-2×3×2+22=1,
(a-b)2=(3-2)2=1,
當(dāng)a=-3,b=2時,a2-2ab+b2=(-3)2-2×(-3)×2+22=25,
(a-b)2=(-3-2)2=25;

(2)(a-b)2=a2-2ab+b2

(3)(25.9)2-2×25.9×5.9+(5.9)2=(25.9-5.9)2=400.
分析:先通過代入求值得出a2-2ab+b2求得的值和(a-b)2的值相等,由此得出相應(yīng)結(jié)論:a2-2ab+b2=(a-b)2,再應(yīng)用結(jié)論計算(3),體會應(yīng)用公式進行簡化計算作用.
點評:本題考查了完全平方公式,在計算時,巧用公式能化繁為簡,起到簡化計算得作用.從而提高計算速度和準(zhǔn)確率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

有一枚均勻的正四面體,四個面上分別標(biāo)有數(shù)字:1,2,3,4,小紅隨機地拋擲一次,把著地一面的數(shù)字記為x;另有三張背面完全相同,正面上分別寫有數(shù)字-2,-1,1的卡片,小亮將其混合后,正面朝下放置在桌面上,并從中隨機地抽取一張,把卡片正面上的數(shù)字記為y;然后他們計算出S=x+y的值.
(1)用樹狀圖或列表法表示出S的所有可能情況;
(2)分別求出當(dāng)S=0和S<2時的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為緩解用電緊張矛盾,某電力公司特制定了新的用電收費標(biāo)準(zhǔn),每月用電量x(精英家教網(wǎng)度)與應(yīng)付電費y(元)的關(guān)系如圖所示.
(1)根據(jù)圖象,請分別求出當(dāng)0≤x≤50和x>50時,y與x的函數(shù)關(guān)系式;
(2)請回答:當(dāng)每月用電量不超過50度時,收費標(biāo)準(zhǔn)是
 
;
當(dāng)每月用電量超過50度時,收費標(biāo)準(zhǔn)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知不等式組
x>-1
x<1
x<1-K

(1)分別求出當(dāng)k=
1
2
,k=3,k=-2時不等式組的解集;
(2)由(1)可知不等式組的解集隨k值的變化而變化,當(dāng)k為任意實數(shù)時,寫出不等式組的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、(1)分別求出當(dāng)a=3,b=2和a=-3,b=2時,代數(shù)式a2-2ab+b2和(a-b)2的值各是多少?
(2)由(1)可以猜想出什么結(jié)論?
(3)利用(2)的結(jié)論計算(25.9)2-2×25.9×5.9+(5.9)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、光華農(nóng)機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺.現(xiàn)將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農(nóng)機租賃公司商定的每天的租賃價格見下表:

(1)設(shè)派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),寫出用x的式子表示y的關(guān)系式;
(2)分別求出當(dāng)x等于28、29、30時租金y的值.

查看答案和解析>>

同步練習(xí)冊答案