如圖,四邊形ABCD是平行四邊形,使它為矩形的條件可以是   
【答案】分析:根據(jù)矩形的判定定理解答,常用的有三種:
(1)有一個角是直角的平行四邊形是矩形;
(2)有三個角是直角的四邊形是矩形;
(3)對角線互相平分且相等的四邊形是矩形.
解答:解:因為四邊形ABCD中,AB∥CD,且AB=CD,
所以四邊形ABCD是平行四邊形,
要判斷平行四邊形ABCD是矩形,
根據(jù)矩形的判定定理,
故填:∠BAD=90°或AC=BD等.
點評:此題是一道幾何結(jié)論開放題,全面地考查了矩形的判定定理,可以大大激發(fā)學(xué)生的思考興趣,拓展學(xué)生的思維空間,培養(yǎng)學(xué)生求異、求變的創(chuàng)新精神.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案