②③④
分析:由P的坐標(biāo)及四邊形PNOM為矩形,表示出OM=a,即為E的橫坐標(biāo),PM=b,即為F的縱坐標(biāo),又E和F都為直線y=-x+1上的點,將E的橫坐標(biāo)代入直線y=-x+1中求出E的縱坐標(biāo),將F的縱坐標(biāo)代入直線y=-x+1中求出F的橫坐標(biāo),進(jìn)而確定出EM和NF,表示出PE及PF,然后三角形OEF的面積=矩形PNOM的面積-直角三角形NOF的面積-直角三角形OEM的面積-直角三角形PEF的面積,求出各自的面積代入,整理后即可求出三角形OEF的面積,可對選項③進(jìn)行判斷;由B和E的坐標(biāo),利用兩點間的距離公式表示出BE的長,同理由A和F的坐標(biāo),表示出AF的長,可判斷BE與AF是否相等;圖中的等腰直角三角形有4個,分別為三角形AOB,三角形BNF,三角形PEF及三角形AEM,由直線y=-x+1,分別令x=0及y=0,求出對應(yīng)的y與x的值,確定出A和B的坐標(biāo),進(jìn)而得到OA=OB,由OA與OB垂直,可得出三角形AOB為等腰直角三角形,即∠OBA=∠OAB=45°,又∠BNF與∠EMA都為直角,可得出三角形BFN與三角形AEM都為直角三角形,同理三角形PEF也為等腰直角三角形,即可確定出圖中等腰三角形有4個,選項②正確;由P為反比例函數(shù)圖象上的點,將P的坐標(biāo)代入反比例函數(shù)解析式中求出2ab=1,將表示出AF及BE代入AF•BE中,計算后將2ab=1代入,可得出AF•BE=1,又OA=OB=1,得到OA•OB=1,即AF•BE=OA•OB,變形后得到一個比例式,再根據(jù)夾角都為45°,根據(jù)兩邊對應(yīng)成比例且夾角相等的兩三角形相似可得出三角形BOE與三角形AOF相似,根據(jù)相似三角形的對應(yīng)角相等可得出∠BOE=∠AFO,而∠BOE=∠BOF+∠FOE,∠OFE為三角形BFO的外角,利用外角性質(zhì)得到∠OFE=∠BOF+∠OBF,根據(jù)等式的性質(zhì)及等量代換可得出∠FOE=∠OBF=45°,選項④,綜上,得到所有正確的選項.
解答:∵P(a,b),∴OM=a,PM=b,
∴點E的橫坐標(biāo)為a,F(xiàn)的縱坐標(biāo)為b,
又E和F都在直線y=-x+1上,
∴點E(a,1-a),點F(1-b,b),即OM=a,EM=1-a,ON=b,NF=1-b,
∴PE=PM-EM=b-(1-a)=a+b-1,PF=PN-NF=a-(1-b)=a+b-1,
∴S
△EOF=S
矩形MONP-S
△EMO-S
△FNO-S
△EPF,
=ab-
a(1-a)-
b(1-b)-
(a+b-1)
2
=
(a+b-1),選項③正確;
∵BE=
=
a,AF=
=
b,
∴BE與AF不一定相等,選項①錯誤;
∵直線y=-x+1分別交x軸、y軸于A,B兩點,
∴令x=0,求出y=1,即B(0,1);令y=0,求出x=1,即A(1,0),
∵OA=OB=1,且∠AOB=90°,即△AOB為等腰直角三角形,
又∠BNF=90°,∠NBF=45°,
∴△BNF為等腰直角三角形,
同理△PEF和△AEM都為等腰直角三角形,
則圖中等腰三角形有4個,選項②正確;
∵△AOB為等腰直角三角形,
∴∠FAO=∠EBO=45°,
∵點P(a,b)是曲線y=
上一點,
∴2ab=1,即AF•BE=
a•
b=2ab=1,
又∵OA•OB=1,
∴
=
,
∴△AOF∽△BEO,
∴∠AFO=∠BOE,
又∠BOE=∠BOF+∠FOE,且∠AFO=∠OBF+∠BOF,
∴∠FOE=∠OBE,又∠OBE=45°,
則∠FOE=45°,選項④正確,
綜上,正確選項的序號有:②③④.
故答案為:②③④.
點評:此題屬于反比例函數(shù)的綜合題,涉及的知識有:相似三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),點的坐標(biāo)與平面圖形,以及兩點間的距離公式,是一道中考?嫉念}型.