【題目】如圖,是的外角,平分,平分,且、交于點,.
(1)求證:;
(2)猜想:若,求的度數(shù).
【答案】(1)見解析;(2)25°
【解析】
(1)首先根據(jù)角平分線的性質,得出∠ACE=∠DCE,又由得出∠ABC=∠DCE,然后根據(jù)同位角相等,兩直線平行即可判定;
(2)首先由得出∠A=∠ACE,∠ABE=∠BEC,然后由角平分線的性質,得出∠ABE=∠DBE,進而得出∠BEC=∠DBE,最后由外角的性質,即可得解.
(1)∵平分,
∴∠ACE=∠DCE
又∵
∴∠ABC=∠DCE
∴(同位角相等,兩直線平行)
即可得證.
(2)由(1)中,得
∠A=∠ACE,∠ABE=∠BEC
∵平分,
∴∠ABE=∠DBE
∴∠BEC=∠DBE
又∵∠DCE=∠ACE=∠BEC+∠DBE=50°
∴ ∠E=25°
故答案為25°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則tan∠AEF的值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以菱形各邊的中點為頂點作四邊形,再以各邊的中點為頂點作四邊形,…,如此下去,得到四邊形,若對角線長分別為和,請用含、的代數(shù)式表示四邊形的周長________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中,,點為三條角平分線的交點,于,于,于,且,,,則點到三邊、、的距離為( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是18,腰AC的垂直平分線EF分別交AC,AB邊于E,F點.若點D為BC邊的中點,點G為線段EF上一動點,則△CDG周長的最小值為( )
A.7B.9C.11D.13
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,點是邊上一個動點,過作直線,設交的平分線于點,交的外角平分線于點.
求證:;
當點在上運動到何處時,四邊形為矩形?請說明理由;
當點在上運動時,四邊形能為菱形嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解全校學生下學期參加社區(qū)活動的情況,學校隨機調查了本校50名學生參加社區(qū)活動的次數(shù),并將調查所得的數(shù)據(jù)整理如下:
活動次數(shù)x | 頻數(shù) | 頻率 |
0<x≤3 | 10 | 0.20 |
3<x≤6 | a | 0.24 |
6<x≤9 | 16 | 0.32 |
9<x≤12 | m | b |
12<x≤15 | 4 | 0.08 |
15<x≤18 | 2 | n |
根據(jù)以上圖表信息,解答下列問題:
(1)表中a=___,b=___;
(2)請把頻數(shù)分布直方圖補充完整(畫圖后請標注相應的數(shù)據(jù));
(3)若該校共有1500名學生,請估計該校在下學期參加社區(qū)活動超過6次的學生有多少人?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com