【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱(chēng)軸為直線(xiàn)x=1,則下列結(jié)論正確的有_____.
①abc>0
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3
③2a+b=0
④當(dāng)x>0時(shí),y隨x的增大而減小
【答案】②③
【解析】由函數(shù)圖象可得拋物線(xiàn)開(kāi)口向下,得到a<0,又對(duì)稱(chēng)軸在y軸右側(cè),可得b>0,根據(jù)拋物線(xiàn)與y軸的交點(diǎn)在y軸正半軸,得到c>0,進(jìn)而得到abc<0,結(jié)論①錯(cuò)誤;由拋物線(xiàn)與x軸的交點(diǎn)為(3,0)及對(duì)稱(chēng)軸為x=1,利用對(duì)稱(chēng)性得到拋物線(xiàn)與x軸另一個(gè)交點(diǎn)為(﹣1,0),進(jìn)而得到方程ax2+bx+c=0的兩根分別為﹣1和3,結(jié)論②正確;由拋物線(xiàn)的對(duì)稱(chēng)軸為x=1,利用對(duì)稱(chēng)軸公式得到2a+b=0,結(jié)論③正確;由拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=1,得到對(duì)稱(chēng)軸右邊y隨x的增大而減小,對(duì)稱(chēng)軸左邊y隨x的增大而增大,故x大于0小于1時(shí),y隨x的增大而增大,結(jié)論④錯(cuò)誤.
∵拋物線(xiàn)開(kāi)口向下,∴a<0,
∵對(duì)稱(chēng)軸在y軸右側(cè),∴>0,∴b>0,
∵拋物線(xiàn)與y軸的交點(diǎn)在y軸正半軸,∴c>0,
∴abc<0,故①錯(cuò)誤;
∵拋物線(xiàn)與x軸的一個(gè)交點(diǎn)為(3,0),又對(duì)稱(chēng)軸為直線(xiàn)x=1,
∴拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為(﹣1,0),
∴方程ax2+bx+c=0的兩根是x1=﹣1,x2=3,故②正確;
∵對(duì)稱(chēng)軸為直線(xiàn)x=1,∴=1,即2a+b=0,故③正確;
∵由函數(shù)圖象可得:當(dāng)0<x<1時(shí),y隨x的增大而增大;
當(dāng)x>1時(shí),y隨x的增大而減小,故④錯(cuò)誤;
故答案為②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線(xiàn),DE,DF分別是△ABD和△ACD的高,連接EF交AD于G.下列結(jié)論:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④當(dāng)∠BAC為60°時(shí),AG=3DG,其中不正確的結(jié)論的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC邊上一點(diǎn),且AB=AE.
(1)求證:△ABC≌△EAD;
(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,從邊長(zhǎng)為a的正方形紙片中剪去一個(gè)邊長(zhǎng)為b的小正方形,再沿著線(xiàn)段AB剪開(kāi),把剪成的兩張紙拼成如圖2的等腰梯形(其面積=(上底+下底)×高)
公式的探究與應(yīng)用:
(1)如圖1所示,可以求出陰影部分的面積是 ;
(2)若將圖1的陰影部分裁剪下來(lái),重新拼成一個(gè)如圖2所示的長(zhǎng)方形,求此長(zhǎng)方形的面積.
(3)比較兩圖陰影部分的面積,可以得到一個(gè)公式:
;
(4)運(yùn)用公式計(jì)算
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解了解節(jié)能減排、垃圾分類(lèi)等知識(shí)的普及情況,從該校2000名學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查調(diào)查,調(diào)查結(jié)果分為“非常了解“、“了解”、“了解較少”、“不了解”四類(lèi),并將調(diào)查結(jié)果繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)本次調(diào)查的學(xué)生共有 人,估計(jì)該校2000名學(xué)生中“不了解”的人數(shù)約有 人.
(2)“非常了解”的4人中有A1,A2兩名男生,B1,B2兩名女生,若從中隨機(jī)抽取兩人去參加環(huán)保知識(shí)競(jìng)賽,請(qǐng)用畫(huà)樹(shù)狀圖和列表的方法,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車(chē)行去年A型車(chē)的銷(xiāo)售總額為6萬(wàn)元,今年每輛車(chē)的售價(jià)比去年減少400元.若賣(mài)出的數(shù)量相同,銷(xiāo)售總額將比去年減少20%.
(1)求今年A型車(chē)每輛車(chē)的售價(jià).
(2)該車(chē)行計(jì)劃新進(jìn)一批A型車(chē)和B型車(chē)共45輛,已知A、B型車(chē)的進(jìn)貨價(jià)格分別是1100元,1400元,今年B型車(chē)的銷(xiāo)售價(jià)格是2000元,要求B型車(chē)的進(jìn)貨數(shù)量不超過(guò)A型車(chē)數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車(chē)獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABC 中,∠ACB=90°,AC=6cm,BC=8cm,點(diǎn) P 從 A 點(diǎn)出發(fā)沿 A-C-B 路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為 B點(diǎn);點(diǎn) Q 從 B 點(diǎn)出發(fā)沿 B-C-A 路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為 A 點(diǎn),點(diǎn) P 和 Q 分別以 1cm/s 和 xcm / s 的運(yùn)動(dòng)速度 同時(shí)開(kāi)始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過(guò) P 和 Q 作 PE⊥ l 于 E,QF⊥ l 于 F.
(1)如圖,當(dāng) x 2 時(shí),設(shè)點(diǎn) P 運(yùn)動(dòng)時(shí)間為 ts ,當(dāng)點(diǎn) P 在 AC 上,點(diǎn) Q 在 BC 上時(shí):
①用含 t 的式子表示 CP 和 CQ,則 CP= cm,CQ= cm;
②當(dāng) t 2 時(shí),PEC 與QFC 全等嗎?并說(shuō)明理由;
(2)請(qǐng)問(wèn):當(dāng) x 3 時(shí),PEC 與QFC 有沒(méi)有可能全等?若能,直接寫(xiě)出符合條件的 t 的值;若不能,請(qǐng)說(shuō)明 理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線(xiàn)AC與BD交于點(diǎn)O.過(guò)點(diǎn)C作BD的平行線(xiàn),過(guò)點(diǎn)D作AC的平行線(xiàn),兩直線(xiàn)相交于點(diǎn)E.
(1)求證:四邊形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面積是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com