【題目】如圖,,分別表示A步行與B騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系.

(1)B出發(fā)時(shí)與A相距___千米。

(2)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時(shí)間是___小時(shí)。

(3)B出發(fā)后___小時(shí)與A相遇。

(4)B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),___小時(shí)與A相遇,相遇點(diǎn)離B的出發(fā)點(diǎn)___千米。在圖中表示出這個(gè)相遇點(diǎn)C.

【答案】110;(21;(33;(4, ;圖見(jiàn)解析;

【解析】

1)從圖上可看出B出發(fā)時(shí)與A相距10千米.

2)修理的時(shí)間就是路程不變的時(shí)間是1.5-0.5=1小時(shí).

3)從圖象看出3小時(shí)時(shí),兩個(gè)圖象相交,所以3小時(shí)時(shí)相遇.

4St的函數(shù)關(guān)系是一次函數(shù),分別求出lA、lB的解析式,列方程組可得交點(diǎn)坐標(biāo),并畫(huà)出圖象.

(1)B出發(fā)時(shí)與A相距10千米.

故答案為:10

(2)修理自行車的時(shí)間為:1.505=1小時(shí).

故答案為:1;

(3)由圖象得:3小時(shí)時(shí)相遇,

故答案為:3;

(4)設(shè)lA:S1=at+b,且過(guò)(0,10)(3,22),

,

解得:

S1=4t+10,

設(shè)B修車前的關(guān)系式為:S2=kt,過(guò)(0.5,7.5)點(diǎn).

7.5=0.5k,

k=15

S2=15t,

相遇時(shí):S1=S2,

4t+10=15t,

t=,

×15=,所以點(diǎn)C如圖所示,

∴若B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),小時(shí)時(shí)相遇,此時(shí)B走的路程是千米.

故答案為:, ;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn)A(-3,0),點(diǎn)B(0,),點(diǎn)P的坐標(biāo)為(1,0),與軸相切于點(diǎn)O,若將P沿軸向左平移,平移后得到(點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′),當(dāng)P′與直線相交時(shí),橫坐標(biāo)為整數(shù)的點(diǎn)P′共有( )

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,C點(diǎn)在y軸上,B點(diǎn)在x軸上,A點(diǎn)從C點(diǎn)出發(fā)沿正西運(yùn)動(dòng),B點(diǎn)在x軸上運(yùn)動(dòng).

1)如圖1當(dāng)∠ABC=∠ABD,作∠CBO的平分線交AC的延長(zhǎng)線于E,作CFEBF.求證:∠ABD=∠ECF

2)如圖2,在(1)的條件下,延長(zhǎng)AB與∠BCO的平分線交于M點(diǎn),下列結(jié)論:

M的度數(shù)不變;

ABC﹣∠M的值不變,可以證明只有一個(gè)結(jié)論正確,請(qǐng)你作出正確的選擇并求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小亮在某橋附近試飛無(wú)人機(jī),如圖,為了測(cè)量無(wú)人機(jī)飛行的高度AD,小亮通過(guò)操控器指令無(wú)人機(jī)測(cè)得橋頭B,C的俯角分別為∠EAB=60°,EAC=30°,且D,B,C在同一水平線上.已知橋BC=30米,求無(wú)人機(jī)飛行的高度AD.(精確到0.01米.參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】參照學(xué)習(xí)函數(shù)的過(guò)程與方法,探究函數(shù)y=的圖象與性質(zhì).

因?yàn)?/span>y=,即y=﹣+1,所以我們對(duì)比函數(shù)y=﹣來(lái)探究.

列表:

x

﹣4

﹣3

﹣2

﹣1

1

2

3

4

y=﹣

1

2

4

﹣4

﹣1

1

y=

2

3

5

﹣3

﹣1

0

描點(diǎn):在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以y=相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示:

(1)請(qǐng)把y軸左邊各點(diǎn)和右邊各點(diǎn),分別用一條光滑曲線順次連接起來(lái);

(2)觀察圖象并分析表格,回答下列問(wèn)題:

①當(dāng)x<0時(shí),yx的增大而   ;(填增大減小”)

y=的圖象是由y=﹣的圖象向   平移   個(gè)單位而得到;

③圖象關(guān)于點(diǎn)   中心對(duì)稱.(填點(diǎn)的坐標(biāo))

(3)設(shè)A(x1,y1),B(x2,y2)是函數(shù)y=的圖象上的兩點(diǎn),且x1+x2=0,試求y1+y2+3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是某種蠟燭在燃燒過(guò)程中高度與時(shí)間之間關(guān)系的圖像,由圖像解答下列問(wèn)題:

(1)此蠟燭燃燒1小時(shí)后,高度為 cm;經(jīng)過(guò) 小時(shí)燃燒完畢;

(2)求這個(gè)蠟燭在燃燒過(guò)程中高度與時(shí)間之間關(guān)系的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)O在直線AB上,OCOD,∠EDO與∠1互余,OF平分∠CODDE于點(diǎn)F,若∠OFD=70°,求∠1的度數(shù).

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡).

2)解∵∠EDO與∠1互余

∴∠EDO+1=90°

OCOD

∴∠COD=90°

∴∠EDO+1+COD=180°

______+______=180°

EDAB.(______

∴∠AOF=OFD=70°______

OF平分∠COD,(已知)

∴∠COF=COD=45°______

∴∠1=AOF-COF=______°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水泥廠的倉(cāng)庫(kù)天內(nèi)進(jìn)出庫(kù)的噸數(shù)記錄如下(+表示進(jìn)庫(kù),-表示出庫(kù))

1)經(jīng)過(guò)這天,水泥倉(cāng)庫(kù)里的水泥是增多了還是減少了?增多或減少了多少噸?

2)經(jīng)過(guò)這天,水泥倉(cāng)庫(kù)管理員結(jié)算時(shí)發(fā)現(xiàn)還庫(kù)存有噸水泥,那么天前水泥倉(cāng)庫(kù)里存有水泥多少噸?

3)如果進(jìn)倉(cāng)庫(kù)的水泥每噸運(yùn)費(fèi)為元,出倉(cāng)庫(kù)的水泥每噸運(yùn)費(fèi)為元,那么這天共要付多少元運(yùn)費(fèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種水泥儲(chǔ)存罐的容量為25立方米,它有一個(gè)輸入口和一個(gè)輸出口.從某時(shí)刻開(kāi)始,只打開(kāi)輸入口,勻速向儲(chǔ)存罐內(nèi)注入水泥,3分鐘后,再打開(kāi)輸出口,勻速向運(yùn)輸車輸出水泥,又經(jīng)過(guò)2.5分鐘儲(chǔ)存罐注滿,關(guān)閉輸入口,保持原來(lái)的輸出速度繼續(xù)向運(yùn)輸車輸出水泥,當(dāng)輸出的水泥總量達(dá)到8立方米時(shí),關(guān)閉輸出口.儲(chǔ)存罐內(nèi)的水泥量y(立方米)與時(shí)間x(分)之間的部分函數(shù)圖象如圖所示.

(1)求每分鐘向儲(chǔ)存罐內(nèi)注入的水泥量.

(2)當(dāng)3≤x≤5.5時(shí),求yx之間的函數(shù)關(guān)系式.

(3)儲(chǔ)存罐每分鐘向運(yùn)輸車輸出的水泥量是   立方米,從打開(kāi)輸入口到關(guān)閉輸出口共用的時(shí)間為   分鐘.

查看答案和解析>>

同步練習(xí)冊(cè)答案