【題目】某學校八年級共有三個班,都參加了學校舉行的書法繪畫大賽,三個班根據(jù)初賽成績分別選出了10名同學參加決賽,這些選手的決賽成績(滿分100分)如下表所示:
決賽成績(單位:分) | |
八年1班 | 80 86 88 80 88 99 80 74 91 89 |
八年2班 | 85 85 87 97 85 76 88 77 87 88 |
八年3班 | 82 80 78 78 81 96 97 87 92 84 |
解答下列問題:
(1)請?zhí)顚懴卤恚?/span>
平均數(shù)(分) | 眾數(shù)(分) | 中位數(shù)(分) | |
八年1班 | 85.5 |
| 87 |
八年2班 | 85.5 | 85 |
|
八年3班 |
| 78 | 83 |
(2)請從以下兩個不同的角度對三個班級的決賽成績進行
①從平均數(shù)和眾數(shù)相結合看(分析哪個班級成績好些).
②從平均數(shù)和中位數(shù)相結合看(分析哪個班級成績好些).
(3)如果在每個班級參加決賽的選手中分別選出3人參加總決賽,你認為哪個班級的實力更強一些?請簡要說明理由.
【答案】(1)85.5,80,86;(2)①從平均數(shù)和眾數(shù)相結合看,八年級2班比較好;②從平均數(shù)和中位數(shù)相結合看,八年級1班比較好;(3)八年級3班比較強一些.
【解析】
(1)根據(jù)平均數(shù)、眾數(shù)及中位數(shù)的定義分別進行解答,即可得出答案;
(2)①、②通過比較三個年級的眾數(shù)、平均數(shù)和中位數(shù)即可得出;
(3)選取三位選手參加比賽,即應該是這個年級的成績高一點的人數(shù)較多,通過比較三個班級的中位數(shù)即可得出結果.
解:(1)八年級1班的眾數(shù)是80分;
八年級2班的中位數(shù)是: =86分;
八年級3班的平均分是:(82+80+78+78+81+96+97+87+92+84)÷10=85.5分;
補表如下:
平均數(shù) | 眾數(shù) | 中位數(shù) | |
八年級1班 | 85.5 | 80 | 87 |
八年級2班 | 85.5 | 85 | 86 |
八年級3班 | 85.5 | 78 | 84 |
故答案為:85.5,80,86;
(2)①從平均數(shù)和眾數(shù)相結合看,八年級2班比較好;
②從平均數(shù)和中位數(shù)相結合看,八年級1班比較好;
(3)八年級3班比較強一些;
因為八年級3班前三名的成績?yōu)?/span>97,96,92;八年級2班前三名的成績?yōu)?/span>97,88,88;八年級1班前三名的成績?yōu)?/span>99,91,89,所以八年級3班的實力更強一些.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,從邊長為a的正方形紙片中剪去一個邊長為b的小正方形,再沿著線段AB剪開,把剪成的兩張紙拼成如圖2的等腰梯形,
(1)設圖1中陰影部分面積為S1 , 圖2中陰影部分面積為S2 , 請直接用含a、b的代數(shù)式表示S1和S2;
(2)請寫出上述過程所揭示的乘法公式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用n邊形的對角線把n邊形分割成(n-2)個三角形,共有多少種不同的分割方案(n≥4)?
(探究)為了解決上面的數(shù)學問題,我們采取一般問題特殊化的策略,先從最簡單情形入手,再逐次遞進轉化,最后猜想得出結論.不妨假設n邊形的分割方案有Pn種.
探究一:用四邊形的對角線把四邊形分割成2個三角形,共有多少種不同的分割方案?
如圖①,圖②,顯然,只有2種不同的分割方案.所以,P4=2.
探究二:用五邊形的對角線把五邊形分割成3個三角形,共有多少種不同的分割方案?
不妨把分割方案分成三類:
第1類:如圖③,用A,E與B連接,先把五邊形分割轉化成1個三角形和1個四邊形,再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.
第2類:如圖④,用A,E與C連接,把五邊形分割成3個三角形,有1種不同的分割方案,可視為種分割方案.
第3類:圖⑤,用A,E與D連接,先把五邊形分割轉化成1個三角形和1個四邊形,再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.
所以,P5 =++=(種)
探究三:用六邊形的對角線把六邊形分割成4個三角形,共有多少種不同的分割方案?
不妨把分割方案分成四類:
第1類:如圖⑥,用A,F(xiàn)與B連接,先把六邊形分割轉化成1個三角形和1個五邊形,再把五邊形分割成3個三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種不同的分割方案.
第2類:如圖⑦,用A,F(xiàn)與C連接,先把六邊形分割轉化成2個三角形和1個四邊形.再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案
第3類:如圖⑧,用A,F(xiàn)與D連接,先把六邊形分割轉化成2個三角形和1個四邊形.再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案.
第4類:如圖⑨,用A,F(xiàn)與E連接,先把六邊形分割轉化成1個三角形和1個五邊形.再把五邊形分割成3個三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種分割方案.
所以,P6 =(種)
探究四:用七邊形的對角線把七邊形分割成5個三角形,則P7與P6的關系為:
P7 = ,共有_____種不同的分割方案.……
(結論)用n邊形的對角線把n邊形分割成(
(應用)用八邊形的對角線把八邊形分割成6個三角形,共有多少種不同的分割方案? (應用上述結論,寫出解答過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:甲乙兩車分別從相距300千米的A、B兩地同時出發(fā)相向而行,其中甲到達B地后立即返回,如圖是它們離各自出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖象.
(1)求甲車離出發(fā)地的距離y甲(千米)與行駛時間x(小時)之間的函數(shù)關系式,并寫出自變量的取值范圍;
(2)若已知乙車行駛的速度是40千米/小時,求出發(fā)后多長時間,兩車離各自出發(fā)地的距離相等;
(3)在上述條件下,直接寫出它們在行駛過程中相遇時的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“五一”假期,某火車客運站旅客流量不斷增大,旅客往往需要長時間排隊等候檢票.經(jīng)調查發(fā)現(xiàn),在車站開始檢票時,有640人排隊檢票.檢票開始后,仍有旅客繼續(xù)前來排隊檢票進站.設旅客按固定的速度增加,檢票口檢票的速度也是固定的.檢票時,每分鐘候車室新增排隊檢票進站16人,每分鐘每個檢票口檢票14人.已知檢票的前a分鐘只開放了兩個檢票口.某一天候車室排隊等候檢票的人數(shù)y(人)與檢票時間x(分鐘)的關系如圖所示.
(1)求a的值.
(2)求檢票到第20分鐘時,候車室排隊等候檢票的旅客人數(shù).
(3)若要在開始檢票后15分鐘內(nèi)讓所有排隊的旅客都能檢票進站,以便后來到站的旅客隨到隨檢,問檢票一開始至少需要同時開放幾個檢票口?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2﹣5ax+4a與x軸交于A、B(A點在B點的左側)與y軸交于點C.
(1)如圖1,連接AC、BC,若△ABC的面積為3時,求拋物線的解析式;
(2)如圖2,點P為第四象限拋物線上一點,連接PC,若∠BCP=2∠ABC時,求點P的橫坐標;
(3)如圖3,在(2)的條件下,點F在AP上,過點P作PH⊥x軸于H點,點K在PH的延長線上,AK=KF,∠KAH=∠FKH,PF=﹣4 a,連接KB并延長交拋物線于點Q,求PQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某體育商店購進一批甲、乙兩種足球,已知3個甲種足球的進價與2個乙種足球的進價的和為142元,2個甲種足球的進價與4個乙種足球的進價的和為164元.
(1)求每個甲、乙兩種足球的進價分別是多少?
(2)如果購進甲種足球超過10個,超出部分可以享受7折優(yōu)惠.商場決定在甲、乙兩種足球選購其中一種,且數(shù)量超過10個,試幫助體育商場判斷購進哪種足球省錢.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com