【題目】如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.

(1)求該拋物線的解析式;
(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標(biāo);若不存在,請說明理由;
(3)當(dāng)0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).

【答案】
(1)

解:∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,

∴B(3,0),C(0,3),

把B、C坐標(biāo)代入拋物線解析式可得 ,解得 ,

∴拋物線解析式為y=x2﹣4x+3


(2)

解:∵y=x2﹣4x+3=(x﹣2)2﹣1,

∴拋物線對稱軸為x=2,P(2,﹣1),

設(shè)M(2,t),且C(0,3),

∴MC= = ,MP=|t+1|,PC= =2 ,

∵△CPM為等腰三角形,

∴有MC=MP、MC=PC和MP=PC三種情況,

①當(dāng)MC=MP時,則有 =|t+1|,解得t= ,此時M(2, );

②當(dāng)MC=PC時,則有 =2 ,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);

③當(dāng)MP=PC時,則有|t+1|=2 ,解得t=﹣1+2 或t=﹣1﹣2 ,此時M(2,﹣1+2 )或(2,﹣1﹣2 );

綜上可知存在滿足條件的點M,其坐標(biāo)為(2, )或(2,7)或(2,﹣1+2 )或(2,﹣1﹣2


(3)

解:如圖,過E作EF⊥x軸,交BC于點F,交x軸于點D,

設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),

∵0<x<3,

∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,

∴SCBE=SEFC+SEFB= EFOD+ EFBD= EFOB= ×3(﹣x2+3x)=﹣ (x﹣ 2+

∴當(dāng)x= 時,△CBE的面積最大,此時E點坐標(biāo)為( ,﹣ ),

即當(dāng)E點坐標(biāo)為( ,﹣ )時,△CBE的面積最大


【解析】(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標(biāo)及對稱軸,可設(shè)出M點坐標(biāo),表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點坐標(biāo)的方程,可求得M點的坐標(biāo);(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設(shè)出E點坐標(biāo),表示出F點的坐標(biāo),表示出EF的長,進(jìn)一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時E點的坐標(biāo).
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)前,“校園ipad現(xiàn)象已經(jīng)受到社會的廣泛關(guān)注,某教學(xué)興趣小組對”“是否贊成中學(xué)生帶手機進(jìn)校園”的問題進(jìn)行了社會調(diào)查.小文將調(diào)查數(shù)據(jù)作出如下不完整的整理: 頻數(shù)分布表

看法

頻數(shù)

頻率

贊成

5

無所謂

0.1

反對

40

0.8


(1)請求出共調(diào)查了多少人;并把小文整理的圖表補充完整;
(2)小麗要將調(diào)查數(shù)據(jù)繪制成扇形統(tǒng)計圖,則扇形圖中“贊成”的圓心角是多少度?
(3)若該校有3000名學(xué)生,請您估計該校持“反對”態(tài)度的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線l是由函數(shù)y= 在第一象限內(nèi)的圖象繞坐標(biāo)原點O逆時針旋轉(zhuǎn)45°得到的,過點A(﹣4 ,4 ),B(2 ,2 )的直線與曲線l相交于點M、N,則△OMN的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙M的圓心M(﹣1,2),⊙M經(jīng)過坐標(biāo)原點O,與y軸交于點A,經(jīng)過點A的一條直線l解析式為:y=﹣ x+4與x軸交于點B,以M為頂點的拋物線經(jīng)過x軸上點D(2,0)和點C(﹣4,0).

(1)求拋物線的解析式;
(2)求證:直線l是⊙M的切線;
(3)點P為拋物線上一動點,且PE與直線l垂直,垂足為E,PF∥y軸,交直線l于點F,是否存在這樣的點P,使△PEF的面積最?若存在,請求出此時點P的坐標(biāo)及△PEF面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:3tan30°+|2﹣ |+( 1﹣(3﹣π)0﹣(﹣1)2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級學(xué)生的體重情況,隨機抽取了九年級部分學(xué)生進(jìn)行調(diào)查,將抽取學(xué)生的體重情況繪制如下不完整的統(tǒng)計圖表,如圖表所示,請根據(jù)圖標(biāo)信息回答下列問題: 體重頻數(shù)分布表

組邊

體重(千克)

人數(shù)

A

45≤x<50

12

B

50≤x<55

m

C

55≤x<60

80

D

60≤x<65

40

E

65≤x<70

16


(1)填空:①m=(直接寫出結(jié)果); ②在扇形統(tǒng)計圖中,C組所在扇形的圓心角的度數(shù)等于度;
(2)如果該校九年級有1000名學(xué)生,請估算九年級體重低于60千克的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團(tuán)委隨機抽取了其中200名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
頻數(shù)頻率分布表

成績x(分)

頻數(shù)(人)

頻率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

n

80≤x<90

m

0.35

90≤x≤100

50

0.25

根據(jù)所給信息,解答下列問題:

(1)m= , n=;
(2)補全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績的中位數(shù)會落在分?jǐn)?shù)段;
(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的3000名學(xué)生中成績是“優(yōu)”等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q.
(1)如圖①,當(dāng)點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;并求當(dāng)BP=2,CQ=9時BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點G,點E、F分別為AG、CD的中點,連接DE、FG.

(1)求證:四邊形DEGF是平行四邊形;
(2)當(dāng)點G是BC的中點時,求證:四邊形DEGF是菱形.

查看答案和解析>>

同步練習(xí)冊答案