將兩塊直角三角板的直角頂點重合為如圖所示的形狀,若∠AOD=127°,則∠BOC=________。

 

【答案】

53°

【解析】

試題分析:由題意可得∠AOB=∠COD=90°,則可得∠AOD+∠BOC=180°,即可求得結果.

∵∠AOB=∠COD=90°

∴∠AOC+∠BOC+∠BOD+∠BOC=180°

即∠AOD+∠BOC=180°

∵∠AOD=127°

∴∠BOC=53°.

考點:直角三角板的應用

點評:直角三角板的應用在初中數(shù)學中極為廣泛,與各個知識點的結合極為容易,因而是中考的熱點,在各種題型中均有出現(xiàn),一般難度不大,需特別注意.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:044

(2006 湖南)如圖1,桌面內,直線l上擺放著兩塊大小相同的直角三角板,它們中較小直角邊的長為6cm,較小銳角的度數(shù)為30°.

(1)將△ECD沿直線AC翻折到圖2的位置,AB相交于點F,請證明:

(2)將△ECD沿直線l向左平移到圖10(b)的位置,使E點落在AB上,你可以求出平移的距離,試試看;

(3)將△ECD繞點C逆時針方向旋轉到圖10(c)的位置,使E點落在AB直,請求出旋轉角的度數(shù).

(b)

(c)

查看答案和解析>>

同步練習冊答案