如圖,點C為線段AB上任意一點(不與A、B重合),分別以AC、BC為一腰在AB的同側作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD與∠BCE都是銳角且∠ACD=∠BCE,連接AE交CD于點M,連接BD交CE于點N,AE與BD交于點P,連接PC.
(1)求證:△ACE≌△DCB;
(2)請你判斷△AMC與△DMP的形狀有何關系并說明理由;
(3)求證:∠APC=∠BPC.
解答:(1)證明:∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
又∵CA=CD,CE=CB,
∴△ACE≌△DCB.
(2)△AMC∽△DMP.
理由:∵△ACE≌△DCB,
∴∠CAE=∠CDB,
又∵∠AMC=∠DMP,
∴△AMC∽△DMP.
(3)∵△AMC∽△DMP,
∴MA:MD=MC:MP.
又∵∠DMA=∠PMC,
∴△AMD∽△CMP,
∴∠ADC=∠APC.
同理∠BEC=∠BPC.
∵CA=CD,CB=CE,
∴∠ADC=(180°-∠ACD),
∠BEC=(180°-∠BCE).
∵∠ACD=∠BCE,
∴∠ADC=∠BEC,
∴∠APC=∠BPC.
分析:(1)證明∠ACE=∠DCB,根據“SAS”證明全等;
(2)由(1)得∠CAM=∠PDM,又∠AMC=∠DMP,所以兩個三角形相似;
(3)由(2)得對應邊成比例,轉證△AMD∽△CMP,得∠APC=∠ADC;同理,∠BPC=∠BEC.在兩個等腰三角形中,頂角相等,則底角相等.
點評:此題考查相似(包括全等)三角形的判定和性質,綜合性較強,第三問難度較大.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com