拓展探究:
(1)先觀察下列等式,數(shù)學(xué)公式,數(shù)學(xué)公式數(shù)學(xué)公式 …將以上三個(gè)等式兩邊分別相加得:數(shù)學(xué)公式然后用你發(fā)現(xiàn)的規(guī)律解答下列問(wèn)題:
①猜想并寫出:數(shù)學(xué)公式______1n-1n+1
②直接寫出下列各式的計(jì)算結(jié)果:
a、數(shù)學(xué)公式=______;
b、數(shù)學(xué)公式______;
③探究并計(jì)算:數(shù)學(xué)公式=______.
(2)有一種“二十四點(diǎn)”的游戲,其游戲規(guī)則是這樣的:任取四個(gè)1至13之間的自然數(shù),將這四個(gè)數(shù)(每個(gè)數(shù)用且只用一次)進(jìn)行加減乘除四則運(yùn)算,使其結(jié)果等于24,例如1,2,3,4,可作如下運(yùn)算:(1+2+3)×4=24.(注意上述運(yùn)算與4×(2+3+1)應(yīng)視作相同方法的運(yùn)算)現(xiàn)有四個(gè)有理數(shù)3,4,-6,10.運(yùn)用上述規(guī)則寫出三種不同方法的運(yùn)算式,使其結(jié)果等于24,運(yùn)算式如下:
(1)______;
(2)______;
(3)______;
(4)另有四個(gè)數(shù)3,-5,7,-13,可通過(guò)運(yùn)算式______使其結(jié)果等于24.

解:(1)由,
①猜想并寫出:=-
②直接寫出下列各式的計(jì)算結(jié)果:
a、=
b、=

=×(1-+-+-+…+-
=×
=

24、(1)10-4-3×(-6)=24;
(2)4-10×(-6)÷3=24;
(3)3×[10+4+(-6)]=24;
(4)[(-5)×(-13)+7]÷3=24.
分析:(1)①先根據(jù)題中所給出的列子進(jìn)行猜想,寫出猜想結(jié)果即可;
②根據(jù)①中的猜想計(jì)算出結(jié)果;
③根據(jù)乘法分配律提取,先拆項(xiàng),再抵消即可求解;
(2)讀懂游戲規(guī)則,試著在給定的四個(gè)數(shù)之間加上運(yùn)算符號(hào),使其結(jié)果等于24.
點(diǎn)評(píng):本題考查的是有理數(shù)的混合運(yùn)算,根據(jù)題意找出規(guī)律是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先觀察下列等式,然后用你發(fā)現(xiàn)的規(guī)律解答下列問(wèn)題.
1
1×2
=1-
1
2

1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4

┅┅
(1)計(jì)算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 
;
(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
;(用含有n的式子表示)
(3)若
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
的值為
17
35
,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀題:先觀察下列等式,然后用你發(fā)現(xiàn)的規(guī)律解答下列問(wèn)題.
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,
1
2×4
=
1
2
1
2
-
1
4
1
4×6
=
1
2
(
1
4
-
1
6
)
1
6×8
=
1
2
(
1
6
-
1
8
)

┅┅
(1)計(jì)算
1
1×2
+
1
2×3
+
1
3×4
+
1
5×6
=
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
.(用含有n的式子表示)
(3)若
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
的值為
49
99
,求n的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索與應(yīng)用.
先填寫下表,通過(guò)觀察后再回答問(wèn)題:
a 0.0001 0.01 1 100 10000
a
0.01 x 1 y 100
(1)表格中x=
0.1
0.1
;y=
10
10
;
(2)從表格中探究a與
a
數(shù)位的規(guī)律,并利用這個(gè)規(guī)律解決下面兩個(gè)問(wèn)題:
①已知
10
≈3.16,則
1000
31.6
31.6
;
②已知
3.24
=1.8,若
a
=180,則a=
32400
32400

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)先閱讀下列一組內(nèi)容,然后解答問(wèn)題:
先觀察下列等式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
1
9×10
=
1
9
-
1
10

將以上等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
9
-
1
10
)
=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
9
-
1
10
=1-
1
10
=
9
10

然后用你發(fā)現(xiàn)的規(guī)律解答下列問(wèn)題:
(1)猜想并寫出:
1
n(n-1)
=
1
n-1
-
1
n
1
n-1
-
1
n

(2)直接寫出下列各式的計(jì)算結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2010×2011
=
2010
2011
2010
2011

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1
;
(3)探究并計(jì)算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2012×2014

查看答案和解析>>

同步練習(xí)冊(cè)答案