【題目】已知△ABC內(nèi)接于⊙O,請僅用無刻度的直尺,根據(jù)下列條件分別在圖1,圖2中畫出∠BAC的平分線(保留作圖痕跡,不寫作法).
(1)如圖1,P是BC邊的中點;
(2)如圖2,直線l與⊙O相切于點P,且l∥BC.
【答案】
(1)解:如圖所示,AD 即為所求;
(2)解:如圖所示,AE即為所求.
【解析】(1)連接OP并延長,交⊙O于D,根據(jù)P是BC邊的中點,可得OD垂直平分BC,進(jìn)而得到點D為 的中點,連接AD,則∠BAD=∠CAD,因此AD即為所求;(2)連接PO并延長,交⊙O于E,根據(jù)直線l與⊙O相切于點P,且l∥BC,可得PE垂直平分BC,進(jìn)而得到點E為 的中點,連接AE,則∠BAE=∠CAE,因此AE即為所求.
【考點精析】解答此題的關(guān)鍵在于理解垂徑定理的相關(guān)知識,掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,以及對圓周角定理的理解,了解頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,點O是AB的中點,且AB= ,將一塊直角三角板的直角頂點放在點O處,始終保持該直角三角板的兩直角邊分別與AC、BC相交,交點分別為D、E,則CD+CE=( )
A.
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF= ∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,△ABC的三個頂點坐標(biāo)分別為A(﹣4,1)、B(﹣1,1)、C(﹣4,3).
(1)畫出Rt△ABC關(guān)于原點O成中心對稱的圖形Rt△A1B1C1;
(2)若Rt△ABC與Rt△A2BC2關(guān)于點B中心對稱,則點A2的坐標(biāo)為、C2的坐標(biāo)為
(3)求點A繞點B旋轉(zhuǎn)180°到點A2時,點A在運動過程中經(jīng)過的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,以點C為圓心5cm為半徑的圓與直線AB的位置關(guān)系是( )
A.相交
B.相切
C.相離
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2﹣4ax+b與x軸的一個交點A的坐標(biāo)為(3,0),與y軸交于點C.
(1)求拋物線與x軸的另一個交點B的坐標(biāo);
(2)當(dāng)a=﹣1時,將拋物線向上平移m個單位后經(jīng)過點(5,﹣7).
①求m的值及平移前、后拋物線的頂點P、Q的坐標(biāo).
②設(shè)平移后拋物線與y軸交于點D,問:在平移后的拋物線上是否存在點E,使得△ECD的面積是△EPQ的3倍?若存在,請求出點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交于A.B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A,B,C,D的坐標(biāo);
(2)判斷以點A,C,D為頂點的三角形的形狀,并說明理由;
(3)點M( m,0)(﹣3<m<﹣1)為線段AB上一點,過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,得矩形PQNM,當(dāng)矩形PQMN的周長最大時,m的值是多少?并直接寫出此時△AEM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.現(xiàn)以這組數(shù)中的各個數(shù)作為正方形的邊長值構(gòu)造正方形,再分別依次從左到右取2個、3個、4個、5個…正方形拼成如上長方形,若按此規(guī)律繼續(xù)作長方形,則序號為⑦的長方形周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點(點A在點B的左邊),與y軸交于點C,連接BC.
(1)求A,B,C三點的坐標(biāo);
(2)若點P為線段BC上一點(不與B,C重合),PM∥y軸,且PM交拋物線于點M,交x軸于點N,當(dāng)△BCM的面積最大時,求點P的坐標(biāo);
(3)在(2)的條件下,當(dāng)△BCM的面積最大時,在拋物線的對稱軸上存在一點Q,使得△CNQ為直角三角形,求點Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com