如圖,甲、乙兩人進行羽毛球比賽,甲發(fā)出一顆十分關鍵的球,出手點為P,羽毛球距地面高度h(米)與其飛行的水平距離s(米)之間的關系式為.若球網(wǎng)AB距原點5米,乙(用線段CD表示)扣球的最大高度為2.25米,

(1)羽毛球的出手點高度為__________米;
(2)設乙的起跳點C的橫坐標為m,若乙原地起跳,因球的高度高于乙扣球的最大高度而導致接失敗,則m取值范圍是__________.
(1)1.5;(2)5<m<4+

試題分析:(1)求出的圖象與y軸的交點坐標即可得到結果;
(2)先求乙恰好扣中的情況,由于乙原地起跳,因球的高度高于乙扣球的最大高度而導致接球失敗,說明乙站到了恰好扣中的那個點和網(wǎng)之間.
(1)在中,當s=0時,
則羽毛球的出手點高度為1.5米;
(2)在中,當時,,解得
但扣球點必須在球網(wǎng)右邊,即m>5,
(舍去),
由于乙原地起跳,因球的高度高于乙扣球的最大高度而導致接球失敗,
∴5<m<(4+)米.
點評:求范圍的問題,可以選取h等于最大高度,求自變量的值,再根據(jù)題意確定范圍.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線yax2bxc經過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.

(1)求拋物線的解析式和對稱軸;      
(2)設點P是直線l上的一個動點,當△PAC是以AC為斜邊的Rt△時,求點P的坐標;
(3)在直線l上是否存在點M,使△MAC為等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由;
(4)設過點A的直線與拋物線在第一象限的交點為N,當△ACN的面積為時,求直線AN的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知拋物線經過點,那么拋物線的解析式是_____________________。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)的圖象如圖所示, 其中對稱軸為:x=1,則下列4個結論中正確的結論有(   )個

; ② ;③ ; ④ ;⑤ .
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經過點(3,0).

⑴ 求b的值;
⑵ 求出該二次函數(shù)圖象的頂點坐標;
⑶ 在所給坐標系中畫出該函數(shù)的圖象(不要求列對應 數(shù)值表,但要求盡可能畫準確).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖像如右圖所示,有下列4個結論:①;②; ③;④;⑤其中正確的是( )
A.2個B.3個C.4個D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)y=ax2+bx+c的圖象如圖所示,那么關于x的方程ax2+bx+c+2=0的根的情況是(   )
A.無實數(shù)根B.有兩個相等實數(shù)根
C.有兩個異號實數(shù)根D.有兩個同號不等實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知拋物線y=ax2+bx+c如圖所示,則下列結論中,正確的是(   )
A.a>0B.a-b+c>0
C.b2-4ac<0D.2a+b=0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,正方形ABCD的邊長為4cm,動點P、Q同時從點A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點C運動,設運動時間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間的函數(shù)關系可用圖象表示為(    )

查看答案和解析>>

同步練習冊答案