已知拋物線y=ax2+bx+c如圖所示,則下列結(jié)論中,正確的是(   )
A.a(chǎn)>0B.a(chǎn)-b+c>0
C.b2-4ac<0D.2a+b=0
D

試題分析:由題意可知,此拋物線的性質(zhì)可以得到,1= ,該拋物線開口向下,故,故A錯誤
當(dāng)x=-1時,a-b+c ,故B錯誤;1= ,故D正確;因為和x軸有兩個交點,故判別式大于0,故C錯誤。故選D
點評:一元二次方程根的判別式是,當(dāng)時,方程有兩個不相等的實數(shù)根;當(dāng)時,方程沒有實數(shù)根,該方程無解;時,該方程有兩個相等的實數(shù)根。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+42交x軸于點A,交直線y=x于點B,拋物線y=ax2﹣2x+c分別交線段AB、OB于點C、D,點C和點D的橫坐標(biāo)分別為16和4,點P在這條拋物線上.

(1)求點C、D的縱坐標(biāo).
(2)求a、c的值.
(3)若Q為線段OB上一點,P、Q兩點的縱坐標(biāo)都為5,求線段PQ的長.
(4)若Q為線段OB或線段AB上一點,PQ⊥x軸,設(shè)P、Q兩點間的距離為d(d>0),點Q的橫坐標(biāo)為m,直接寫出d隨m的增大而減小時m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

小明從如圖所示的二次函數(shù)的圖象中,觀察得出了下面五條信息:

;②;③
;⑤
你認為其中正確的是( )
A.①②④B.①③⑤C.②③⑤D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知拋物線 經(jīng)過(2,1)和(6,-5)兩點.

(1)求拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于C點,點P是在直線右側(cè)的此拋物線上一點,過點PPM軸,垂足為M. 若以AP、M為頂點的三角形與△OCB相似,求點P的坐標(biāo);
(3)點E是直線BC上的一點,點F是平面內(nèi)的一點,若要使以點O、BE、F為頂點的四邊形是菱形,請直接寫出點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形中,,,.動點從點出發(fā),以每秒個單位長度的速度在線段上運動;動點同時從點出發(fā),以每秒個單位長度的速度在線段上運動.以為邊作等邊△,與梯形在線段的同側(cè).設(shè)點運動時間為,當(dāng)點到達點時,運動結(jié)束.

(1)當(dāng)?shù)冗叀?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023703859477.png" style="vertical-align:middle;" />的邊恰好經(jīng)過點時,求運動時間的值;
(2)在整個運動過程中,設(shè)等邊△與梯形的重合部分面積為,請直接寫
之間的函數(shù)關(guān)系式和相應(yīng)的自變量的取值范圍;
(3)如圖,當(dāng)點到達點時,將等邊△繞點旋轉(zhuǎn)(),
直線分別與直線、直線交于點、.是否存在這樣的,使△為等腰三角形?
若存在,請求出此時線段的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,甲、乙兩人進行羽毛球比賽,甲發(fā)出一顆十分關(guān)鍵的球,出手點為P,羽毛球距地面高度h(米)與其飛行的水平距離s(米)之間的關(guān)系式為.若球網(wǎng)AB距原點5米,乙(用線段CD表示)扣球的最大高度為2.25米,

(1)羽毛球的出手點高度為__________米;
(2)設(shè)乙的起跳點C的橫坐標(biāo)為m,若乙原地起跳,因球的高度高于乙扣球的最大高度而導(dǎo)致接失敗,則m取值范圍是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知函數(shù) 與的圖象交于點,點的縱坐標(biāo)為1,則關(guān)于的方程的解為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的最大值是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=ax2+bx+c的圖像如圖所示,那么關(guān)于x的方程ax2+bx+c-4=0的根的情況是(     )
A.有兩個不相等的實數(shù)根B.有兩個異號的實數(shù)根
C.有兩個相等的實數(shù)根D.沒有實數(shù)根

查看答案和解析>>

同步練習(xí)冊答案