如圖,?ABCD中,AE,CF分別是∠BAD,∠BCD的角平分線,請(qǐng)?zhí)砑右粋(gè)條件
AE=EC
AE=EC
使四邊形AECF為菱形.
分析:容易證△ABE≌△CDF,所以BE=DF,再由AF、CE平行且相等判定四邊形AFCE是平行四邊形.當(dāng)AC=EC時(shí),四邊形AECF是菱形.
解答:證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,∠BAD=∠BCD,AB=CD,
而AE、CF分別是∠DAB、∠BCD的角平分線,
∴∠BAE=∠FCD,
在△ABE與△CDF中,
∠BAE=∠FCD
AB=CD
∠B=∠D

∴△ABE≌△CDF(ASA),
∴BE=DF,
而AD=BC,
∴AF=CE,而AF∥CE,
∴四邊形AFCE是平行四邊形.
又AC=EC,
∴平行四邊形AECF是菱形.
故答案是:AE=EC.
點(diǎn)評(píng):本題考查了平行四邊形的性質(zhì)、菱形的判定.菱形的判定方法有三種:①定義:一組鄰邊相等的平行四邊形是菱形;②四邊相等;③對(duì)角線互相垂直平分的四邊形是菱形.根據(jù)平行四邊形的判定可得四邊形AECF是平行四邊形,由平行四邊形的性質(zhì)知,對(duì)角線互相平分,又對(duì)角線互相平分且垂直的四邊形是菱形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,?ABCD中,O為AC、BD的中點(diǎn),則圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,?ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線AC,BD相交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn),下列說(shuō)法不正確的是( 。
A、當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF一定為平行四邊形
B、在旋轉(zhuǎn)的過(guò)程中,線段AF與EC總相等
C、當(dāng)旋轉(zhuǎn)角為45°時(shí),四邊形BEDF一定為菱形
D、當(dāng)旋轉(zhuǎn)角為45°時(shí),四邊形ABEF一定為等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,?ABCD中,E是CD的延長(zhǎng)線上一點(diǎn),BE與AD交于點(diǎn)F,DE=
12
DC.  若△DEF的面積為2,則?ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,?ABCD中,點(diǎn)E是AD的中點(diǎn),延長(zhǎng)CE交BA的延長(zhǎng)線于點(diǎn)F.
求證:AB=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•浙江)如圖,?ABCD中,對(duì)角線AC和BD交于點(diǎn)O,過(guò)O作OE∥BC交DC于點(diǎn)E,若OE=5cm,則AD的長(zhǎng)為
10
10
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案