【題目】如圖,在RtABC中,∠ACB90°,DE分別是AB、AC的中點(diǎn),連接CD,過EEFDCBC的延長(zhǎng)線于F

1)證明:四邊形CDEF是平行四邊形;

2)若四邊形CDEF的周長(zhǎng)是16cmAC的長(zhǎng)為8cm,求線段AB的長(zhǎng)度.

【答案】(1)詳見解析;(2)10cm

【解析】

1)由三角形中位線定理推知BDFC2DEBC,然后結(jié)合已知條件“EFDC”,利用兩組對(duì)邊相互平行得到四邊形DCFE為平行四邊形;

2)根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半得到AB2DC,即可得出四邊形DCFE的周長(zhǎng)=AB+BC,故BC16AB,然后根據(jù)勾股定理即可求得.

1)證明:∵D、E分別是AB、AC的中點(diǎn),

EDRtABC的中位線,

EDBCBC2DE,

EFDC,

∴四邊形CDEF是平行四邊形;

2)解:∵四邊形CDEF是平行四邊形;

DCEF,

DCRtABC斜邊AB上的中線,

AB2DC,

∴四邊形DCFE的周長(zhǎng)=AB+BC,

∵四邊形DCFE的周長(zhǎng)為16cmAC的長(zhǎng)8cm,

BC16AB

∵在RtABC中,∠ACB90°

AB2BC2+AC2,

AB2=(16AB2+82

解得:AB10cm,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一條筆直的東西向海岸線l上有一長(zhǎng)為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N20km.一輪船以36km/h的速度航行,上午1000A處測(cè)得燈塔C位于輪船的北偏西30°方向,上午1040B處測(cè)得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.

(1)若輪船照此速度與航向航向,何時(shí)到達(dá)海岸線?

(2)若輪船不改變航向,該輪船能否停靠在碼頭?請(qǐng)說明理由(參考數(shù)據(jù): ≈1.4 ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一臺(tái)放置在水平桌面上的筆記本電腦,將其側(cè)面抽象成如右圖所示的幾何圖形,若顯示屏所在面的側(cè)邊AO與鍵盤所在面的側(cè)邊BO長(zhǎng)均為24cm,點(diǎn)P為眼睛所在位置,DAO的中點(diǎn),連接PD,當(dāng)PD?AO時(shí),稱點(diǎn)P最佳視角點(diǎn),作PC?BC,垂足COB的延長(zhǎng)線上,且BC=12cm

1)當(dāng)PA=45cm時(shí),求PC的長(zhǎng);

2)若?AOC=120°時(shí),最佳視角點(diǎn)”P在直線PC上的位置會(huì)發(fā)生什么變化?此時(shí)PC的長(zhǎng)是多少?請(qǐng)通過計(jì)算說明.(結(jié)果精確到0.1cm,可用科學(xué)計(jì)算器,參考數(shù)據(jù): ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師將1個(gè)黑球和若干個(gè)白球放入一個(gè)不透明的口袋并攪勻,讓若干學(xué)生進(jìn)行摸球?qū)嶒?yàn),每次摸出一個(gè)球(有放回),下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù).

摸球的次數(shù)n

100

150

200

500

800

1000

摸到黑球的次數(shù)m

23

31

60

130

203

251

摸到黑球的頻率

0.23

0.21

0.30

0.26

0.253

1)補(bǔ)全上表中的有關(guān)數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計(jì)從袋中摸出一個(gè)球是黑球的概率是   ;(精確到0.01

2)估算袋中白球的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,,COD=60°.

(1)AOC是等邊三角形嗎?請(qǐng)說明理由;

(2)求證:OCBD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,以RtABCAC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,作OFABBC于點(diǎn)F,連接EF.

(1)求證:OFCE

(2)求證:EF是⊙O的切線;

(3)O的半徑為3,EAC=60°,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點(diǎn)G,點(diǎn)FCD上一點(diǎn),且.連接AF并延長(zhǎng)交⊙O于點(diǎn)E,連接AD,DE.CF2AF3.下列結(jié)論:①△ADF∽△AED;FG2;tanESDEF4.其中正確的是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)坐標(biāo)為,且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).

(1)求拋物線的表達(dá)式及A,B兩點(diǎn)的坐標(biāo).

(2)(1)中拋物線的對(duì)稱軸l上是否存在一點(diǎn)P,使AP+CP的值最?若存在,求AP+CP的最小值;若不存在,請(qǐng)說明理由;

(3)在以AB為直徑的⊙M中,CE與⊙M相切于點(diǎn)E,CEx軸于點(diǎn)D,求直線CE的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】CD兩城蔬菜緊缺,A,B兩城決定支援,A城有蔬菜20噸,B城有蔬菜40噸,C城需要蔬菜16噸,D城需要蔬菜44噸,已知AC,D的運(yùn)輸費(fèi)用分別為200/噸,220/噸,BC,D的運(yùn)輸費(fèi)用分別為300/噸,340/噸,規(guī)定AC城運(yùn)的噸數(shù)不小于BC城運(yùn)的噸數(shù),設(shè)A城向C城運(yùn)x噸,請(qǐng)回答下列問題:

1)根據(jù)題意條件,填寫下列表格:


2)設(shè)總費(fèi)用為y(元),求出y(元)與x(噸)的函數(shù)關(guān)系式,并寫出x的取值范圍;

3)怎樣調(diào)運(yùn)貨物能使總費(fèi)用最少?最少費(fèi)用是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案