【題目】下列各式運(yùn)算結(jié)果為正數(shù)的是( )
A.-24×5
B.(1-2)4×5
C.(1-24)×5
D.1-(3×5)6
【答案】B
【解析】A.-24×5<0 ;
B. (1-2)4 ×5>0 ;
C.(1-24)×5 <0;
D. 1-(3×5)6<0.
.所以選擇B
【考點(diǎn)精析】本題主要考查了有理數(shù)的乘方的相關(guān)知識點(diǎn),需要掌握有理數(shù)乘方的法則:1、正數(shù)的任何次冪都是正數(shù)2、負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時: (-a)n=-an或(a -b)n=-(b-a)n , 當(dāng)n為正偶數(shù)時: (-a)n =an 或 (a-b)n=(b-a)n才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點(diǎn)D,過點(diǎn)D的直線交BC邊于點(diǎn)E,∠BDE=∠A.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑R=5,cosA=,求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)有一個角是60°的菱形繞它的中心旋轉(zhuǎn),使它與原來的菱形重合,那么旋轉(zhuǎn)的角度至少是
A.90° B.180° C.270° D.360°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與x軸的負(fù)半軸相交于點(diǎn)C(如圖),點(diǎn)C的坐標(biāo)為(0,﹣3),且BO=CO
(1)求這個二次函數(shù)的解析式;
(2)設(shè)這個二次函數(shù)的圖象的頂點(diǎn)為M,求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,將點(diǎn)A行向右平移3個單位長度,再向下平移5個單位長度,得到 ;將點(diǎn)B先向下平移5個單位長度,再向右平移3個單位長度,得到 ;則 與 相距( )
A.4個單位長度
B.5個單位長度
C.6個單位長度
D.7個單位長度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別為AB,AC邊上的中點(diǎn),連接DE,將△ADE繞點(diǎn)E旋轉(zhuǎn)180°得到△CFE,連接AF,AC.
(1)求證:四邊形ADCF是菱形;
(2)若BC=8,AC=6,求四邊形ABCF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按照下列步驟做一做:
(1)一個兩位數(shù)的個位上的數(shù)是a,十位上的數(shù)是b,請寫出這個兩位數(shù);
(2)交換這個兩位數(shù)的十位數(shù)字和個位數(shù)字,得到一個新數(shù);請寫出這個新兩位數(shù);
(3)求這兩個兩位數(shù)的和.結(jié)果能被11整除嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 在平面直角坐標(biāo)系中,將點(diǎn)P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點(diǎn)P′的坐標(biāo)是( )
A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com