【題目】如果關(guān)于x的一元二次方程kx2﹣3x﹣1=0有兩個(gè)不相等的實(shí)根,那么k的取值范圍是 .
【答案】k>﹣ 且k≠0
【解析】解:∵關(guān)于x的一元二次方程kx2﹣3x﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,
∴k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,
解得:k>﹣ 且k≠0.
故答案為:k>﹣ 且k≠0.
本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根.也考查了一元二次方程的定義.根據(jù)一元二次方程的定義和△的意義得到k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明的爸爸和媽媽分別駕車從家同時(shí)出發(fā)去上班,爸爸行駛到甲處時(shí),看到前面路口時(shí)紅燈,他立即剎車減速并在乙處停車等待,爸爸駕車從家到乙處的過(guò)程中,速度v(m/s)與時(shí)間t(s)的關(guān)系如圖1中的實(shí)線所示,行駛路程s(m)與時(shí)間t(s)的關(guān)系如圖2所示,在加速過(guò)程中,s與t滿足表達(dá)式s=at2
(1)根據(jù)圖中的信息,寫出小明家到乙處的路程,并求a的值;
(2)求圖2中A點(diǎn)的縱坐標(biāo)h,并說(shuō)明它的實(shí)際意義;
(3)爸爸在乙處等代理7秒后綠燈亮起繼續(xù)前行,為了節(jié)約能源,減少剎車,媽媽駕車從家出發(fā)的行駛過(guò)程中,速度v(m/s)與時(shí)間t(s)的關(guān)系如圖1中的折線O﹣B﹣C所示,行駛路程s(m)與時(shí)間t(s)的關(guān)系也滿足s=at2 , 當(dāng)她行駛到甲處時(shí),前方的綠燈剛好亮起,求此時(shí)媽媽駕車的行駛速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個(gè)結(jié)論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結(jié)論有( 。
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般地,當(dāng)α、β為任意角時(shí),sin(α+β)與sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβ;sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如sin90°=sin(60°+30°)=sin60°cos30°+cos60°sin30°= × + × =1.類似地,可以求得sin15°的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù)且a≠0)的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 的圖象可能是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)E是AC的中點(diǎn),AC=2AB,∠BAC的平分線AD交BC于點(diǎn)D,作AF∥BC,連接DE并延長(zhǎng)交AF于點(diǎn)F,連接FC.
求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,△ABO≌△ADO.下列結(jié)論:
①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.
其中所有正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小宇想測(cè)量位于池塘兩端的A、B兩點(diǎn)的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點(diǎn)C處,測(cè)得∠ACF=45°,再向前行走100米到點(diǎn)D處,測(cè)得∠BDF=60°.若直線AB與EF之間的距離為60米,求A、B兩點(diǎn)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更新果樹(shù)品種,某果園計(jì)劃新購(gòu)進(jìn)A、B兩個(gè)品種的果樹(shù)苗栽植培育,若計(jì)劃購(gòu)進(jìn)這兩種果樹(shù)苗共45棵,其中A種苗的單價(jià)為7元/棵,購(gòu)買B種苗所需費(fèi)用y(元)與購(gòu)買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購(gòu)買計(jì)劃中,B種苗的數(shù)量不超過(guò)35棵,但不少于A種苗的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)購(gòu)買方案,使總費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com