如圖,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)A、B兩點(diǎn),與x軸交于點(diǎn)C,
求:(1)一次函數(shù)的解析式;
(2)△AOC的面積.

解:(1)∵由圖可知A(2,4)、B(0,2),
,
解得
故此一次函數(shù)的解析式為:y=x+2;

(2)∵由圖可知,C(-2,0),A(2,4),
∴OC=2,AD=4,
∴S△AOC=OC•AD=×2×4=4.
答:△AOC的面積是4.
分析:(1)由圖可知A、B兩點(diǎn)的坐標(biāo),把兩點(diǎn)坐標(biāo)代入一次函數(shù)y=kx+b即可求出kb的值,進(jìn)而得出結(jié)論;
(2)由C點(diǎn)坐標(biāo)可求出OC的長(zhǎng)再由A點(diǎn)坐標(biāo)可知AD的長(zhǎng),利用三角形的面積公式即可得出結(jié)論.
點(diǎn)評(píng):本題考查的是待定系數(shù)法求一次函數(shù)的解析式及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),先根據(jù)一次函數(shù)的圖象得出A、B、C三點(diǎn)的坐標(biāo)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫(xiě)出當(dāng)x>0時(shí),一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點(diǎn)A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是( 。
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過(guò)點(diǎn)A.當(dāng)y<3時(shí),x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過(guò)點(diǎn)
A(m,2)
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時(shí),y1和y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點(diǎn)C,CD⊥x軸于點(diǎn)D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案