【題目】蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需(
A.(a+b)元
B.(3a+2b)元
C.(2a+3b)元
D.5(a+b)元

【答案】C
【解析】解:買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元, 共用去:(2a+3b)元.
故選:C.
用單價乘數(shù)量得出買2千克蘋果和3千克香蕉的總價,再進(jìn)一步相加即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知直線 AB、CD 相交于點(diǎn) OCOE=90°

1)若∠AOC=36°,求∠BOE 的度數(shù);

2)若∠BODBOC=15,求∠AOE 的度數(shù).

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923292236627968/1924724835590144/STEM/dc8ee683cff64dfdb92368e07f9f9b9d.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD,對角線AC和BD相交于O,下面選項(xiàng)不能得出四邊形ABCD是平行四邊形的是(
A.AB∥CD,且AB=CD
B.AB=CD,AD=BC
C.AO=CO,BO=DO
D.AB∥CD,且AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1=65°,∠2=65°,∠3=115°.試說明:DE∥BC,DF∥AB.根據(jù)圖形,完成下面的推理:

因?yàn)椤?=65°,∠2=65°,

所以∠1=∠2.

所以______________    (         ).

因?yàn)锳B與DE相交,

所以∠1=∠4(     ).

所以∠4=65°.

又因?yàn)椤?=115°,

所以∠3+∠4=180°.

所以        (          ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項(xiàng)式2a2-4ab+2b2分解因式的結(jié)果是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,請分別根據(jù)已知條件進(jìn)行推理,得出結(jié)論,并在括號內(nèi)注明理由.

①∵ ∠B=∠3(已知),∴____________.(______,______)

②∵∠1=∠D (已知),∴____________.(______,______)

③∵∠2=∠A (已知),∴____________.(______,______)

④∵∠B+∠BCE=180° (已知),∴____________.(______,______)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算(﹣a32的結(jié)果是(
A.a6
B.﹣a6
C.﹣a5
D.a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“x2倍與7的和不大于15”用不等式可表示為(

A.2x+715B.2x+7≤15C.2(x+7) 15D.2(x+7)≤15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、OB三點(diǎn)在一直線上,∠AOC120°OD、OE分別是∠AOC,

∠BOC的平分線.

(1)判斷ODOE的位置關(guān)系;

(2)當(dāng)∠AOC大小發(fā)生變化時,OD、OE仍分別是∠AOC、∠BOC的平分線,則ODOE的位置關(guān)系是否改變? 請說明理由.

查看答案和解析>>

同步練習(xí)冊答案