【題目】在如圖所示的5×5的方格紙中,每個小正方形的邊長為1,點A、B、C均為格點(格點是指每個小正方形的頂點).

(1)按下列要求畫圖:

標出格點D,使CD∥AB,并畫出線段CD;

標出格點E,使CE⊥AB,并畫出線段CE.

(2)CDCE的關(guān)系是 .

(3)計算△ABC的面積.

【答案】(1)①畫圖見解析②畫圖見解析;(2) CD⊥CE,CD=CE;(3)4.

【解析】

(1)直接利用網(wǎng)格得出AB的平行線CD;直接利用網(wǎng)格結(jié)合垂線的作法得出答案;
(2)可通過勾股定理證明CDCE.

(3)根據(jù)三角形的面積為大正方形減去三個小直角三角形即可.

(1)①如圖;

②如圖;

(2) CD⊥CE,CD=CE

(3) S△ABC=3×3×3×1×2×2×3×1=4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列一段文字,再回答后面的問題.

已知在平面內(nèi)兩點P1(x1,y1),P2(x2,y2),這兩點間的距離P1P2=,同時,當兩點所在的直線在坐標軸或平行于坐標軸或垂直于坐標軸時,兩點間距離公式可簡化為|x2﹣x1||y2﹣y1|.

(1)已知A(3,3),B(﹣2,﹣1),試求A,B兩點間的距離;

(2)已知A,B在平行于y軸的直線上,點A的縱坐標為7,點B的縱坐標為﹣2,試求A,B兩點間的距離;

(3)已知一個三角形各頂點坐標為A(0,5),B(﹣3,2),C(3,2),你能判斷此三角形的形狀嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD= ,AF平分∠DAB,過C點作CE⊥BD于E,延長AF、EC交于點H,下列結(jié)論中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED,正確的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(不含B、C兩點),將 ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將 CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.則以下結(jié)論中正確的個數(shù)有( ).

CMP∽ BPA;
②四邊形AMCB的面積最大值為10;
③當P為BC中點時,AE為線段NP的中垂線;
④線段AM的最小值為2 ;
⑤當 ABP≌ AND時,BP=4 -4.
A.①②③
B.②③⑤
C.①④⑤
D.①②⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖一,∠ACB=90°,點D在AC上,DE⊥AB垂足為E,交BC的延長線于F,DE=EB,EG=EB,
(1)求證:AG=DF;
(2)過點G作GH⊥AD,垂足為H,與DE的延長線交于點M,如圖二 找出圖中與AB相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售單價x(元/件)與日銷售量y(件)之間的關(guān)系如下表.

x(元∕件)

15

18

20

22

y(件)

250

220

200

180

按照這樣的規(guī)律可得,日銷售利潤w(元)與銷售單價x(元/件)之間的函數(shù)關(guān)系式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個人做游戲:在一個不透明的口袋中裝有4張相同的紙牌,它們分別標有數(shù)字1,2,3,4.從中隨機摸出一張紙牌然后放回,再隨機摸出一張紙牌,若兩次摸出的紙牌上數(shù)字之和是3的倍數(shù),則甲勝;否則乙勝.這個游戲?qū)﹄p方公平嗎?請列表格或畫樹狀圖說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠E=50°,BAC=50°,D=110°,求∠ABD的度數(shù).

請完善解答過程,并在括號內(nèi)填寫相應(yīng)的理論依據(jù).

解:∵∠E=50°,BAC=50°,(已知)

∴∠E=   (等量代換)

      .(   

∴∠ABD+D=180°.(   

∴∠D=110°,(已知)

∴∠ABD=70°.(等式的性質(zhì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點A出發(fā)沿AD向點D勻速運動,速度是1cm/s;同時,點Q從點C出發(fā)沿CB方向,在射線CB上勻速運動,速度是2cm/s,過點P作PE∥AC交DC于點E,連接PQ、QE,PQ交AC于F.設(shè)運動時間為t(s)(0<t<8),解答下列問題:
(1)當t為何值時,四邊形PFCE是平行四邊形;
(2)設(shè)△PQE的面積為s(cm2),求s與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使得△PQE的面積為矩形ABCD面積的
(4)是否存在某一時刻t,使得點E在線段PQ的垂直平分線上.

查看答案和解析>>

同步練習(xí)冊答案