判斷題

⊙O中,AB是弦,∠AOB=,則弦AB所對的圓周角等于

(  )

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求這個三角形的面積小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂精英家教網(wǎng)點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上.
 

(2)畫△DEF,DE、EF、DF三邊的長分別為
2
、
8
、
10

①判斷三角形的形狀,說明理由.
②求這個三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

12、閱讀下列證明過程:
已知,如圖:四邊形ABCD中,AB=DC,AC=BD,AD≠BC,求證:四邊形ABCD是等腰梯形.

讀后完成下列各小題.
(1)證明過程是否有錯誤如有,錯在第幾步上,答:
沒有錯誤

(2)作DE∥AB的目的是:
為了證明AD∥BC

(3)判斷四邊形ABED為平行四邊形的依據(jù)是:
一組對邊平行且相等的四邊形是平行四邊形

(4)判斷四邊形ABCD是等腰梯形的依據(jù)是
梯形及等腰梯形的定義

(5)若題設中沒有AD≠BC,那么四邊形ABCD一定是等腰梯形嗎?為什么?
不一定,因為當AD=BC時,四邊形ABCD是矩形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•南昌)某數(shù)學活動小組在作三角形的拓展圖形,研究其性質(zhì)時,經(jīng)歷了如下過程:
(1)操作發(fā)現(xiàn):在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖1所示,其中DF⊥AB于點F,EG⊥AC于點G,M是BC的中點,連接MD和ME,則下列結(jié)論正確的是
①②③④
①②③④
(填序號即可)
①AF=AG=
12
AB;②MD=ME;③整個圖形是軸對稱圖形;④MD⊥ME.
(2)數(shù)學思考:在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖2所示,M是BC的中點,連接MD和ME,則MD和ME具有怎樣的數(shù)量關系?請給出證明過程;
(3)類比探究:
(i)在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作等腰直角三角形,如圖3所示,M是BC的中點,連接MD和ME,試判斷△MED的形狀.答:
等腰直角三角形
等腰直角三角形

(ii)在三邊互不相等的△ABC中(見備用圖),仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中點,連接MD和ME,要使(2)中的結(jié)論此時仍然成立,你認為需增加一個什么樣的條件?(限用題中字母表示)并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,過△ABC頂點A作BC邊上的高AD和中線AE,點D是垂足,點E是BC中點,規(guī)定λA=
DEBE
.特別地,當D、E重合時,規(guī)定λA=0.另外對λB、λC也作類似規(guī)定.

(1)①當△ABC中,AB=AC時,則λA=
0
0
;②當△ABC中,λAB=0時,則△ABC的形狀是
等邊三角形
等邊三角形
;
(2)如圖2,在Rt△ABC中,∠A=30°,求λA和λC的值;
(3)如圖3,正方形網(wǎng)格中,格點△ABC的λA=
2
2
;
(4)判斷下列三種說法的正誤(正確的打“√”錯誤的打“×”)
①若△ABC中λA<1,則△ABC為銳角三角形
×
×

②若△ABC中λA=1,則△ABC為直角三角形
;
③若△ABC中λA>1,則△ABC為鈍角三角形
;
(5)通過本題解答,同學們應該有這樣的認識:一個無論多么陌生、多么綜合的問題,其實都來自于書本已學的基礎知識.因此,我們今后應重視基礎知識的學習;同時在解決問題時或者解決問題后,應該思考該問題的本質(zhì)和目的:①鞏固哪些基礎知識;②培養(yǎng)我們哪些方面能力;③向我們滲透哪些數(shù)學思想.本題之所以是一道綜合題,就是因為涉及到的知識點多、面廣.下面就請你談談本題中所用到的、已學過的性質(zhì)、定理、公理或判定等.(至少列舉兩條)

查看答案和解析>>

同步練習冊答案