作业宝如圖,△ABC中,AB=AC,D是BC的中點,DE⊥AB于E,DF⊥AC于F.求證:
(1)DE=DF; 
(2)AE=AF.

證明:(1)如圖,連接AD.
∵AB=AC,D是BC的中點,
∴AD平分∠BAC,
又∵DE⊥AB于E,DF⊥AC于F
∴DE=DF;

(2)∵DE⊥AB于E,DF⊥AC于F,
∴∠AED=∠AFD=90°,
∴在Rt△AED與Rt△AFD中,,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF.
分析:(1)D是BC的中點,那么AD就是等腰三角形ABC底邊上的中線,根據(jù)等腰三角形三線合一的特性,可知道AD也是∠BAC的角平分線,根據(jù)角平分線的點到角兩邊的距離相等,那么DE=DF;
(2)由全等三角形的判定定理HL證得Rt△AED≌Rt△AFD,則該全等三角形的對應(yīng)邊相等:AE=AF.
點評:本題考查了等腰三角形的性質(zhì)及全等三角形的判定與性質(zhì);利用等腰三角形三線合一的性質(zhì)是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案