【題目】如圖,O內(nèi)有折線OABC,點(diǎn)B、C在圓上,點(diǎn)AO內(nèi),其中OA=4cm,BC=14cm,∠A=∠B=AB的長(zhǎng)為__________________

【答案】10cm

【解析】

延長(zhǎng)AOBCD,過(guò)OBC的垂線設(shè)垂足為E,根據(jù)∠A、∠B的度數(shù)易證得ABD是等邊三角形,設(shè)AB的長(zhǎng)為xcm由此可表示出OD、BDDE的長(zhǎng)Rt△ODE,根據(jù)∠ODE的度數(shù),可得出OD=2DE,進(jìn)而可求出x的值

延長(zhǎng)AOBCD,OEBCE,設(shè)AB的長(zhǎng)為xcm

∵∠A=∠B=60°,∴∠ADB=60°,∴△ADB為等邊三角形,∴BDADABx

OA=4cm,BC=14cm,∴BE=7cmDE=(x﹣7)cm,OD=(x﹣4)cm

又∵∠ADB=60°,∴∠DOE=30°,∴DEOD,∴x﹣7x﹣4),解得x=10(cm).

故答案為:10 cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)O是三角形ABC所在平面內(nèi)一動(dòng)點(diǎn),連接OB、OC,并將AB、OB、OC、AC中點(diǎn)D、E、F、G,依次連接起來(lái),設(shè)DEFG能構(gòu)成四邊形.

(1)如圖,當(dāng)點(diǎn)OABC內(nèi)時(shí),求證:四邊形DEFG是平行四邊形;

(2)當(dāng)點(diǎn)OABC外時(shí),(1)的結(jié)論是否成立?(畫(huà)出圖形,指出結(jié)論,不需說(shuō)明理由;)

(3)若四邊形DEFG是菱形,則點(diǎn)O的位置應(yīng)滿(mǎn)足什么條件?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD中,AE平分∠BADDCE,DFBCF,交AEG,且ADDF.過(guò)點(diǎn)DDC的垂線,分別交AE、AB于點(diǎn)MN

1)若MAG中點(diǎn),且DM2,求DE的長(zhǎng);

2)求證:ABCF+DM

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小杰在學(xué)完了《銳角三角比》知識(shí)后回家整理筆記,寫(xiě)下了下列四句活:(1)銳角A的正弦的值的范圍是0<sinA<1;(2)根據(jù)正切和余切的意義,可以得到tanA=;(3)在Rt△ABC中,如∠C=90°,則cosB=sinA;(4)在Rt△ABC中,如∠C=90°,則cotB=tanA;請(qǐng)你判斷上述語(yǔ)句正確的個(gè)數(shù)是( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以AB為直徑作O,過(guò)點(diǎn)AO的切線AC,連結(jié)BC,交O于點(diǎn)D,點(diǎn)EBC邊的中點(diǎn),連結(jié)AE

(1)求證:∠AEB=2∠C

(2)若AB=6,,求DE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,已知ABlDEl,垂足分別為B、E,且Cl上一點(diǎn),∠ACD=90°.求證:△ABCCED;

2)如圖2,在四邊形ABCD中,ABC=90°,AB=6,BC=8,CD=20,DA=.求BD的長(zhǎng)為_(kāi)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,二次函數(shù)≠0的圖像經(jīng)過(guò)點(diǎn)(3,5)、(2,8)、(0,8).

①求這個(gè)二次函數(shù)的解析式;

②已知拋物線≠0,≠0,且滿(mǎn)足≠0,1,則我們稱(chēng)拋物線互為“友好拋物線”,請(qǐng)寫(xiě)出當(dāng)時(shí)第①小題中的拋物線的友好拋物線,并求出這“友好拋物線”的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.動(dòng)點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)開(kāi)始移動(dòng),點(diǎn)P的速度為1 cm/秒,點(diǎn)Q的速度為2 cm/秒,點(diǎn)Q移動(dòng)到點(diǎn)C后停止,點(diǎn)P也隨之停止運(yùn)動(dòng)下列時(shí)間瞬間中,能使△PBQ的面積為15cm 的是(

A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象分別經(jīng)過(guò)點(diǎn)(0,3)(3,0)(﹣2,﹣5),

(1)求這個(gè)二次函數(shù)的解析式;

(2)若這個(gè)二次函數(shù)的圖象與x軸交于點(diǎn)C、D(C點(diǎn)在點(diǎn)D的左側(cè)),且點(diǎn)A是該圖象的頂點(diǎn),請(qǐng)?jiān)谶@個(gè)二次函數(shù)的對(duì)稱(chēng)軸上確定一點(diǎn)B,使ABC是等腰三角形,求出點(diǎn)B的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案