【題目】已知二次函數(shù)y=ax2+bx+c的圖象分別經(jīng)過(guò)點(diǎn)(0,3)(3,0)(﹣2,﹣5),

(1)求這個(gè)二次函數(shù)的解析式;

(2)若這個(gè)二次函數(shù)的圖象與x軸交于點(diǎn)C、D(C點(diǎn)在點(diǎn)D的左側(cè)),且點(diǎn)A是該圖象的頂點(diǎn),請(qǐng)?jiān)谶@個(gè)二次函數(shù)的對(duì)稱(chēng)軸上確定一點(diǎn)B,使ABC是等腰三角形,求出點(diǎn)B的坐標(biāo).

【答案】(1) 二次函數(shù)的解析式為y=﹣x2+2x+3;(2) AC邊為腰,AC=AB,則B(1,4﹣2)或(1,4+2);AC邊為腰,AC=BC,則B(1,﹣4);AC邊為底,AB=BC,則B(1,

【解析】

(1)將三點(diǎn)坐標(biāo)代入y=ax2+bx+c求解即可.
(2)由解析式求出A、C兩點(diǎn)坐標(biāo),再設(shè)出對(duì)稱(chēng)軸上的B點(diǎn)坐標(biāo),由三點(diǎn)確定一個(gè)等腰三角形求出B點(diǎn)坐標(biāo).

(1)將三點(diǎn)坐標(biāo)代入y=ax2+bx+c,得:

解得:

∴這個(gè)二次函數(shù)的解析式為

(2)由y=﹣x2+2x+3可知,C(﹣1,0),A(1,4),由于B點(diǎn)在對(duì)稱(chēng)軸上,則設(shè)B點(diǎn)坐標(biāo)為(1,y).

由于△ABC是等腰三角形,則分三種情況:

AC邊為腰,AC=AB,則B(1,4﹣2)或(1,4+2);

AC邊為腰,AC=BC,則B(1,﹣4);

AC邊為底,AB=BC,則B(1,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O內(nèi)有折線(xiàn)OABC,點(diǎn)B、C在圓上,點(diǎn)AO內(nèi),其中OA=4cm,BC=14cm,∠A=∠B=AB的長(zhǎng)為__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線(xiàn)交于D.

(1)求證:ADC∽△CDB;

(2)若AC=2,AB=CD,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是一輛吊車(chē)的實(shí)物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動(dòng)點(diǎn)A離地面BD的高度AH3.4m.當(dāng)起重臂AC長(zhǎng)度為9m,張角∠HAC118°時(shí),求操作平臺(tái)C離地面的高度(結(jié)果保留小數(shù)點(diǎn)后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長(zhǎng)為18米,從DE兩處測(cè)得路燈B的仰角分別為αβ,且tanα=6,tanβ=,求燈桿AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點(diǎn).

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)根據(jù)所給條件,請(qǐng)直接寫(xiě)出不等式kx+b>的解集;

(3)過(guò)點(diǎn)BBC⊥x軸,垂足為C,求SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DC⊙O的直徑,點(diǎn)B在圓上,直線(xiàn)ABCD延長(zhǎng)線(xiàn)于點(diǎn)A,且∠ABD=∠C.

(1)求證:AB⊙O的切線(xiàn);

(2)若AB=4cm,AD=2cm,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題原型:如圖,在等腰直角三角形ABC中,ACB=90°,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段BD,連結(jié)CD.過(guò)點(diǎn)DBCDBC邊上的高DE, 易證ABC≌△BDE,從而得到BCD的面積為

初步探究:如圖,在Rt△ABC中,∠ACB=90°,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段BD,連結(jié)CD.用含a的代數(shù)式表示△BCD的面積,并說(shuō)明理由.

簡(jiǎn)單應(yīng)用:如圖,在等腰三角形ABC中,AB=ACBC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段BD,連結(jié)CD.直接寫(xiě)出△BCD的面積.(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某專(zhuān)賣(mài)店專(zhuān)營(yíng)某品牌的襯衫,店主對(duì)上一周中不同尺碼的襯衫銷(xiāo)售情況統(tǒng)計(jì)如下:

該店主決定本周進(jìn)貨時(shí),增加一些41碼的襯衫,影響該店主決策的統(tǒng)計(jì)量是(

A.平均數(shù) B.方差 C.眾數(shù) D.中位數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案