【題目】如圖,已知直線y=x+1與y軸交于點(diǎn)A,與x軸交于點(diǎn)D,拋物線y=x2+bx+c與直線交于A、E兩點(diǎn),與x軸交于B、C兩點(diǎn),且B點(diǎn)坐標(biāo)為(1,0).

(1)求該拋物線的解析式;

(2)在拋物線的對稱軸上找一點(diǎn)M,使|AM﹣MC|的值最大,求出點(diǎn)M的坐標(biāo);

(3)動點(diǎn)P在x軸上移動,當(dāng)△PAE是直角三角形時(shí),求點(diǎn)P的坐標(biāo).

【答案】(1)y=x2﹣x+1;(2)M(,﹣).(3)點(diǎn)P的坐標(biāo)為(,0)或(1,0)或(3,0)或(,0).

析】

試題分析:(1)根據(jù)直線的解析式求得點(diǎn)A(0,1),那么把A,B坐標(biāo)代入y=x2+bx+c即可求得函數(shù)解析式.

(2)易得|AM﹣MC|的值最大,應(yīng)找到C關(guān)于對稱軸的對稱點(diǎn)B,連接AB交對稱軸的一點(diǎn)就是M.應(yīng)讓過AB的直線解析式和對稱軸的解析式聯(lián)立即可求得點(diǎn)M坐標(biāo).

(3)讓直線解析式與拋物線的解析式結(jié)合即可求得點(diǎn)E的坐標(biāo).△PAE是直角三角形,應(yīng)分點(diǎn)P為直角頂點(diǎn),點(diǎn)A是直角頂點(diǎn),點(diǎn)E是直角頂點(diǎn)三種情況探討.

試題解析:(1)將A(0,1)、B(1,0)坐標(biāo)代入y=x2+bx+c

,

解得:

∴物線的解折式為y=x2﹣x+1;

(2)拋物線的對稱軸為x=,B、C關(guān)于x=對稱,

∴MC=MB,

要使|AM﹣MC|最大,即是使|AM﹣MB|最大,

由三角形兩邊之差小于第三邊得,當(dāng)A、B、M在同一直線上時(shí)|AM﹣MB|的值最大.

知直線AB的解析式為y=﹣x+1

,

解得:

則M(,﹣).

(3)設(shè)點(diǎn)E的橫坐標(biāo)為m,則它的縱坐標(biāo)為m2﹣m+1,

即E點(diǎn)的坐標(biāo)(m,m2﹣m+1),…

又∵點(diǎn)E在直線y=x+1上,

∴m2﹣m+1=m+1

解得m1=0(舍去),m2=4,

∴E的坐標(biāo)為(4,3).

(Ⅰ)當(dāng)A為直角頂點(diǎn)時(shí),

過A作AP1⊥DE交x軸于P1點(diǎn),設(shè)P1(a,0)易知D點(diǎn)坐標(biāo)為(﹣2,0),

由Rt△AOD∽Rt△P1OA得

,,

∴a=,a=-(舍去),

∴P1,0).

(Ⅱ)同理,當(dāng)E為直角頂點(diǎn)時(shí),過E作EP2⊥DE交x軸于P2點(diǎn),

由Rt△AOD∽Rt△P2ED得,

即:,

∴EP2=

∴DP2=

∴a=

∴P2點(diǎn)坐標(biāo)為(,0).

(Ⅲ)當(dāng)P為直角頂點(diǎn)時(shí),過E作EF⊥x軸于F,設(shè)P3(b、0),

由∠OPA+∠FPE=90°,得∠OPA=∠FEP,Rt△AOP∽Rt△PFE,

得:,

解得b1=3,b2=1,

∴此時(shí)的點(diǎn)P3的坐標(biāo)為(1,0)或(3,0),

綜上所述,滿足條件的點(diǎn)P的坐標(biāo)為(,0)或(1,0)或(3,0)或(,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)多邊形的內(nèi)角和等于外角和的4倍,則此多邊形的邊數(shù)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】標(biāo)準(zhǔn)足球場是一個(gè)長方形,其長為105m,寬為68m,它的面積的萬分之一大約有( )

A. 一只手掌心大 B. 一本數(shù)學(xué)課本大

C. 一個(gè)教室大 D. 一個(gè)教室講臺大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列問題中,錯(cuò)誤的個(gè)數(shù)是( 。

(1)三點(diǎn)確定一個(gè)圓; (2)平分弦的直徑垂直于弦;

(3)相等的圓心角所對的弧相等; (4)正五邊形是軸對稱圖形.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分9分)等邊ABC的邊長為2,P是BC邊上的一動點(diǎn)(不與B,C重合),設(shè)BP=x,連接AP,以AP為邊向兩側(cè)作等邊APD和等邊APE,分別與邊AB,AC交于點(diǎn)M,N. (如圖1).

(1)求證:AM=AN;

(2)若BM=,求x的值;

(3)求四邊形ADPE與ABC重疊部分的面積S與x之間的函數(shù)關(guān)系式及S的最小值;

(4)如圖2,連接DE分別與邊AB,AC交于點(diǎn)G,H.當(dāng)x為何值時(shí),BAD=15 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】y軸上的點(diǎn)Ax軸的距離為3,則點(diǎn)A的坐標(biāo)為( )

A. (3,0) B. (3,0)(-3,0)

C. (0,3) D. (0,3)(0,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種藥品經(jīng)過兩次降價(jià),藥價(jià)從原來每盒60元降至到現(xiàn)在48.6元,則平均每次降價(jià)的百分比率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在0,1,﹣1,π四個(gè)數(shù)中,最小的實(shí)數(shù)是( )

A. ﹣1 B. π C. 0 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x1x2是一元二次方程x2+mx-1=0的兩個(gè)實(shí)數(shù)根,x1<x2; x3,x4是一元二次方程x2+mx-2=0的兩個(gè)實(shí)數(shù)根, x3<x4 .則下列結(jié)論正確的是(

A. x1<x2< x3<x4 B. x1 < x3<x4 <x2 C. x3< x1<x2<x4 D. x1 < x3<x2<x4

查看答案和解析>>

同步練習(xí)冊答案