如圖,AB、CD是⊙O的兩條平行弦,BEAC交CD于E,過A點的切線交DC延長線于P,若AC=3
2
,則PC•CE的值是(  )
A.18B.6C.6
2
D.9
3

如圖,連接AD、BC.
∵AB、CD是⊙O的兩條平行弦,
∴弧AC=弧BD,
∴∠BCD=∠ADC.
∵過A點的切線交DC延長線于P,
∴∠PAC=∠D,
∴∠PAC=∠BCE.
∵BEAC交CD于E,
∴∠PCA=∠BEC,
∴△APC△CBE,
BE
PC
=
CE
AC
,
又AC=BE=3
2
,
∴PC•CE=(3
2
2=18.
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,割線ABC與⊙O相交于B、C兩點,D為⊙O上一點,E為弧BC的中點,OE交BC于F,DE交AC于G,∠ADG=∠AGD.
(1)求證:AD是⊙O的切線;
(2)如果AB=2,AD=4,EG=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,延長⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線,E是切點,過點B作DE的垂線,垂足為點C.
求證:∠ACB=
1
3
∠OAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△AOB中,OA=OB,∠A=30°,⊙O經(jīng)過AB的中點E分別交OA、OB于C、D兩點,連接CD.
(1)求證:AB是⊙O的切線;
(2)求證:ABCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB切⊙O于點B,∠A=30°,AB=2
3
,則半徑OB的長為( 。
A.1B.
3
C.2D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ABCD,∠B=90°,AB=AD,∠BAD的平分線交BC于E,連接DE.
(1)說明點D在△ABE的外接圓上;
(2)若∠AED=∠CED,試判斷直線CD與△ABE外接圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O與CA、CB相切于點A、B,OA=OB=2
3
cm,AB=6cm,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知∠BAC=45°,一動點O在射線AB上運動(點O與點A不重合),設(shè)OA=x,如果半徑為1的⊙O與射線AC有公共點,那么x的取值范圍是( 。
A.0<x≤
2
B.l<x≤
2
C.1≤x<
2
D.x>
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA是⊙O的切線,切點為A,PA=2
3
,∠APO=30°,則⊙O的半徑長為______.

查看答案和解析>>

同步練習(xí)冊答案