【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖.對(duì)稱軸x=﹣1.下列結(jié)論:
①4ac﹣b2<0;②4a+c<2b;③3b+2c<0.
其中正確結(jié)論的個(gè)數(shù)是( 。
A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)
【答案】B
【解析】
根據(jù)二次函數(shù)的性質(zhì)以及圖象信息,一一判斷即可.
∵拋物線與x軸有交點(diǎn),∴△>0,∴b2﹣4ac>0,∴4ac﹣b2<0,故①正確.
∵x=﹣2時(shí),y>0,∴4a﹣2b+c>0,∴4a+c>2b,故②錯(cuò)誤,∴對(duì)稱軸x=﹣1,∴﹣=﹣1,∴b=2a,∴y=ax2+2ax+c.
∵(-3,0)與(1,0)關(guān)于直線x=-1對(duì)稱,而當(dāng)x=-3時(shí),y<0,∴當(dāng)x=1時(shí),y<0,∴3a+c<0,∴6a+2c<0,∴3b+2c<0,故③正確.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫(xiě)出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)小學(xué)的學(xué)習(xí)我們知道,分?jǐn)?shù)可分為“真分?jǐn)?shù)”和“假分?jǐn)?shù)”,并且假分?jǐn)?shù)都可化為帶分?jǐn)?shù).類比分?jǐn)?shù),對(duì)于分式也可以定義:對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”.類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).
如:
解決下列問(wèn)題:
(1)分式是________分式(填“真”或“假”);
(2)假分式可化為帶分式_________的形式;請(qǐng)寫(xiě)出你的推導(dǎo)過(guò)程;
(3)如果分式的值為整數(shù),那么的整數(shù)值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為的菱形中,.連結(jié)對(duì)角線,以為邊作第二個(gè)菱形,使.連結(jié),再以為邊作第三個(gè)菱形,使,一按此規(guī)律所作的第個(gè)菱形的邊長(zhǎng)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形OABC的頂點(diǎn)A在x軸上,頂點(diǎn)B的坐標(biāo)為(4,6),直線y=kx+3k將平行四邊形OABC分割成面積相等的兩部分,則k的值是( ).
A. B. C.- D.﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD、DEFG都是正方形,AB與CG交于點(diǎn)下列結(jié)論:;;;;其中正確的有______;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄂州市化工材料經(jīng)銷公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千 克30元.物價(jià)部門規(guī)定其銷售單價(jià)不高于每千克60元,不低于每千克30元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí) ,y=80;x=50時(shí),y=100.在銷售過(guò)程中,每天還要支付其他費(fèi)用450元.
(1)(3分)求出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
(2)(3分)求該公司銷售該原料日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式.
(3)(4分)當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“滴滴出行”改變了傳統(tǒng)打車方式,最大化節(jié)省了司機(jī)與乘客雙方的資源與時(shí)間.該打車方式的總費(fèi)用由里程費(fèi)和耗時(shí)費(fèi)組成,其中里程費(fèi)按元公里計(jì)算,耗時(shí)費(fèi)按元分鐘計(jì)算.甲、乙兩乘客用該打車方式出行,按上述計(jì)價(jià)規(guī)則,其打車總費(fèi)用、行駛里程數(shù)與平均車速等信息如下表:
平均速度(公里/時(shí)) | 里程數(shù)(公里) | 車費(fèi)(元) | |
甲乘客 | |||
乙乘客 |
(1)求,的值;
(2)如果你采用“滴滴出行”的打車方式,保持平均車速公里時(shí),行駛了公里,那么你是否能夠計(jì)算出打車的總費(fèi)用?如果能,總費(fèi)用為多少元?如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com