【題目】如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線交于點(diǎn)O,連接OC,已知AC=,OC=,則另一直角邊BC的長(zhǎng)為__________

【答案】

【解析】分析:如圖所示,過OOFBC,過AAMOF,證明△AOM≌△BOF,根據(jù)全等三角形的可得AM=OF,OM=FB,再證明四邊形ACFM為矩形,根據(jù)矩形的性質(zhì)可得AM=CF,AC=MF=,在等腰直角三角形△OCF中,根據(jù)勾股定理求得CF=OF=1,再求得FM=,根據(jù)BC=CF+BF即可求得BC的長(zhǎng).

詳解:如圖所示,過OOF⊥BC,過AAM⊥OF,

∵四邊形ABDE為正方形,

∴∠AOB=90°,OA=OB,

∴∠AOM+∠BOF=90°,

又∠AMO=90°,

∴∠AOM+∠OAM=90°,

∴∠BOF=∠OAM,

在△AOM和△BOF中, ,

∴△AOM≌△BOF(AAS),

∴AM=OF,OM=FB,

又∠ACB=∠AMF=∠CFM=90°,

∴四邊形ACFM為矩形,

AM=CF,AC=MF=,

∴OF=CF,

∴△OCF為等腰直角三角形,

OC=

∴根據(jù)勾股定理得:CF2+OF2=OC2,

解得:CF=OF=1,

FB=OM=OF-FM=1-=,

BC=CF+BF=

故答案為: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形).

(1)將△ABC沿x軸方向向左平移6個(gè)單位,畫出平移后得到的△A1B1C1;

(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點(diǎn)B2、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一天李小虎同學(xué)用幾何畫板畫圖,他先畫了兩條平行線AB,CD,然后在平行線間畫了一點(diǎn)E,連接BE,DE后(如圖),他用鼠標(biāo)左鍵點(diǎn)住點(diǎn)E,拖動(dòng)后,分別得到如圖,等圖形,這時(shí)他突然一想,BD與∠BED之間的度數(shù)有沒有某種聯(lián)系呢?接著小虎同學(xué)通過利用幾何畫板度量角度計(jì)算功能,找到了這三個(gè)角之間的關(guān)系.

1)你能探究出圖到圖各圖中的∠B,∠D與∠BED之間的關(guān)系嗎?

2)請(qǐng)從圖②③④中,選一個(gè)說明它成立的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】準(zhǔn)備一張矩形紙片,按如圖操作:將ABE沿BE翻折,使點(diǎn)A落在對(duì)角線BD上的M點(diǎn),將CDF沿DF翻折,使點(diǎn)C落在對(duì)角線BD上的N點(diǎn).

1)求證:四邊形BFDE是平行四邊形.

2)若四邊形BFDE是菱形,BE =2,求菱形BFDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】順次連結(jié)菱形各邊中點(diǎn)得到的四邊形是____________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某巡警騎摩托車在一條南北大道上巡邏,某天他從崗?fù)こ霭l(fā),晚上停留在處,規(guī)定向北方向?yàn)檎,?dāng)天行駛紀(jì)錄如下(單位:千米)

,,,,,

在崗?fù)ず畏?距崗(fù)ざ噙h(yuǎn)?

在行駛過程中,最遠(yuǎn)處離出發(fā)點(diǎn)有多遠(yuǎn)?

若摩托車行駛千米耗油升,這一天共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=30°,以AB為直徑的⊙O經(jīng)過點(diǎn)C.過點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)P.點(diǎn)D為圓上一點(diǎn),且 = ,弦AD的延長(zhǎng)線交切線PC于點(diǎn)E,連接BC.

(1)判斷OB和BP的數(shù)量關(guān)系,并說明理由;
(2)若⊙O的半徑為2,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2﹣2ax+c與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)是(﹣1,0),O是坐標(biāo)原點(diǎn),且|OC|=3|OA|

(1)求拋物線的函數(shù)表達(dá)式;
(2)直接寫出直線BC的函數(shù)表達(dá)式;
(3)如圖1,D為y軸的負(fù)半軸上的一點(diǎn),且OD=2,以O(shè)D為邊作正方形ODEF.將正方形ODEF以每秒1個(gè)單位的速度沿x軸的正方向移動(dòng),在運(yùn)動(dòng)過程中,設(shè)正方形ODEF與△OBC重疊部分的面積為s,運(yùn)動(dòng)的時(shí)間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關(guān)系式;
②在運(yùn)動(dòng)過程中,s是否存在最大值?如果存在,直接寫出這個(gè)最大值;如果不存在,請(qǐng)說明理由.
(4)如圖2,點(diǎn)P(1,k)在直線BC上,點(diǎn)M在x軸上,點(diǎn)N在拋物線上,是否存在以A、M、N、P為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)DDEACDE=OC, 連接 CE、OE,連接AEOD于點(diǎn)F.(1)求證:OE=CD 2)若菱形ABCD的邊長(zhǎng)為6,ABC=60°,求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案