【題目】準(zhǔn)備一張矩形紙片,按如圖操作:將ABE沿BE翻折,使點(diǎn)A落在對(duì)角線BD上的M點(diǎn),將CDF沿DF翻折,使點(diǎn)C落在對(duì)角線BD上的N點(diǎn).

1)求證:四邊形BFDE是平行四邊形.

2)若四邊形BFDE是菱形,BE =2,求菱形BFDE的面積.

【答案】(1)見解析;(2)2

【解析】分析:1)根據(jù)矩形的性質(zhì)和翻折變換的性質(zhì)得到∠EBD=FDB,證明EBDF根據(jù)平行四邊形的判定定理證明結(jié)論;

2)根據(jù)菱形的性質(zhì)和翻折變換的性質(zhì)求出∠ABE=30°,根據(jù)直角三角形的性質(zhì)求出AB=,根據(jù)菱形的面積公式計(jì)算即可.

詳解:(1∵四邊形ABCD是矩形,∴∠A=C=90°,AB=CDABCD,∴∠ABD=CDB由翻折變換的性質(zhì)可知,ABE=EBD,CDF=FDB∴∠EBD=FDB,EBDF

EDBF,∴四邊形BFDE為平行四邊形;

2∵四邊形BFDE為菱形,∴∠EBD=FBD

∵∠EBD=ABE,∴∠EBD=FBD=ABE

∵四邊形ABCD是矩形ABC=90°,∴∠EBD=FBD=ABE=30°,AB=,∴菱形BFDE的面積S=DE×AB=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(a,0),B(n,0)且a、n滿足|a+2|+=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移4個(gè)單位,再向右平移3個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.

(1)求點(diǎn)C,D的坐標(biāo)及四邊形OBDC的面積;

(2)如圖2,若 點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PC,PO,當(dāng)點(diǎn)PBD上移動(dòng)時(shí)(不與B,D重合)的值是否發(fā)生變化,并說明理由.

(3)在四邊形OBDC內(nèi)是否存在一點(diǎn)P,連接PO,PB,PC,PD,使SPCD=SPBD; SPOB:SPOC=1?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求回答問題

(1)如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①當(dāng)點(diǎn)D在AC上時(shí),如圖1,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?直接寫出你猜想的結(jié)論;
②將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<90°),如圖2,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請(qǐng)說明理由.

(2)當(dāng)△ABC和△ADE滿足下面甲、乙、丙中的哪個(gè)條件時(shí),使線段BD、CE在(1)中的位置關(guān)系仍然成立?不必說明理由.
甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;
乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;
丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A﹣5,0)、B﹣2,3)、C﹣1,0

(1)畫出ABC關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱的A1B1C1

(2)ABC繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,畫出對(duì)應(yīng)的A′B′C′,

(3)若以A′、B′、C′、D′為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫出在第四象限中的D′坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生孝敬父母的情況(選項(xiàng):A為父母洗一次腳;B幫父母做一次家務(wù);C給父母買一件禮物;D其它),在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,得到如下圖表(部分信息未給出)

根據(jù)以上信息解答下列問題:

1)這次被調(diào)查的學(xué)生有多少人?

2)求表中mn,p的值,并補(bǔ)全條形統(tǒng)計(jì)圖.

3)該校有1600名學(xué)生,估計(jì)該校全體學(xué)生中選擇B選項(xiàng)的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在數(shù)軸上點(diǎn)表示數(shù)點(diǎn)表示數(shù),且、滿足

點(diǎn)表示的數(shù)為________;點(diǎn)表示的數(shù)為________

若點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,請(qǐng)?jiān)跀?shù)軸上找一點(diǎn),使,則點(diǎn)表示的數(shù)________

若在原點(diǎn)處放一擋板,一小球甲從點(diǎn)處以個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)處以個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為(秒),請(qǐng)分別表示出甲、乙兩小球到原點(diǎn)的距離(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線交于點(diǎn)O,連接OC,已知AC=,OC=,則另一直角邊BC的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動(dòng),運(yùn)動(dòng)到3秒鐘時(shí),兩點(diǎn)相距15個(gè)單位長(zhǎng)度.已知?jiǎng)狱c(diǎn)A、B的運(yùn)動(dòng)速度比之是3:2(速度單位:1個(gè)單位長(zhǎng)度/秒).

(1)求兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)的速度;

(2)A、B兩點(diǎn)運(yùn)動(dòng)到3秒時(shí)停止運(yùn)動(dòng),請(qǐng)?jiān)跀?shù)軸上標(biāo)出此時(shí)A、B兩點(diǎn)的位置;

(3)若A、B兩點(diǎn)分別從(2)中標(biāo)出的位置再次同時(shí)開始在數(shù)軸上運(yùn)動(dòng),運(yùn)動(dòng)的速度不變,運(yùn)動(dòng)的方向不限,問:經(jīng)過幾秒鐘,A、B兩點(diǎn)之間相距4個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問題:

1作出ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°AB1C1

2作出ABC關(guān)于原點(diǎn)O成中心對(duì)稱的A1B2C2

3)請(qǐng)直接寫出以A1、B2、C2為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)________.

查看答案和解析>>

同步練習(xí)冊(cè)答案