【題目】甲、乙兩同學玩“托球賽跑”游戲,商定:用球拍托著乒乓球從起跑線l起跑,繞過點P跑回到起跑線l(如圖所示),途中乒乓球掉下時須撿起并回到掉球處繼續(xù)賽跑,用時少者勝.結果:甲同學由于心急,掉了球,浪費了6秒鐘,乙同學則順利跑完.事后,乙同學說:“我倆所用的全部時間的和為50秒,撿球過程不算在內時,甲的速度是我的1.2倍.”根據圖文信息,請問哪位同學獲勝?
科目:初中數學 來源: 題型:
【題目】如圖,山頂建有一座鐵塔,塔高米,測量人員在一個小山坡的P處測得塔的底部B點的仰角為,塔頂C點的仰角為已測得小山坡的坡角為,坡長米求山的高度精確到1米參考數據:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2+5x﹣2m=0有兩個不相等的實數根.
(1)求m的取值范圍;
(2)若兩個實數根分別為x1和x2,且x12+x22=23,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】節(jié)能燈在城市已經基本普及,某商場計劃購進甲、乙兩種型號的節(jié)能燈共1200只,這兩種節(jié)能燈的進價、售價如下表:
(1)如何進貨,進貨款恰好為46000元.
(2)如何進貨,商場銷售完節(jié)能燈后獲利恰好是進貨價的30%,此時利潤為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若干名工人某天生產同一種玩具,生產的玩具數整理成條形圖(如圖所示).則他們生產的玩具數的平均數、中位數、眾數分別為( )
A.5,5,4 B.5,5,5
C.5,4,5 D.5,4,4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,用正方形是墩壘石梯,下圖分別表示壘到一、二階梯時的情況,那么照這樣壘下去
一級 二級
①填出下表中未填的兩空,觀察規(guī)律。
階梯級數 | 一級 | 二級 | 三級 | 四級 |
石墩塊數 | 3 | 9 |
②到第n級階梯時,共用正方體石墩_______________塊(用n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)閱讀下面材料:
點A,B在數軸上分別表示實數a,b,A,B兩點之間的距離表示為|AB|.
當A,B兩點中有一點在原點時,不妨設點A在原點,如圖(1),|AB|=|OB|=|b|=|a﹣b|;當A,B兩點都不在原點時,
①如圖(2),點A,B都在原點的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;
②如圖(3),點A,B都在原點的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;
③如圖(4),點A,B在原點的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;
綜上,數軸上A,B兩點之間的距離|AB|=|a﹣b|.
(2)回答下列問題:
①數軸上表示2和5的兩點之間的距離是 ,數軸上表示﹣2和﹣5的兩點之間的距離是 ,數軸上表示1和﹣3的兩點之間的距離是 ;
②數軸上表示x和﹣1的兩點A和B之間的距離是 ,如果|AB|=2,那么x為 ;
③當代數式|x+1|+|x﹣2|取最小值時,相應的x的取值范圍是 .
④解方程|x+1|+|x﹣2|=5.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】東東在研究數學問題時遇到一個定義:將三個已經排好順序數:x1,x2,x3,稱為數列x1,x2,x3.計算|x1|,,,將這三個數的最小值稱為數列x1,x2,x3的最佳值.例如,對于數列2,-1,3,因為|2|=2,=,=,所以數列2,-1,3的最佳值為.
東東進一步發(fā)現:當改變這三個數的順序時,所得到的數列都可以按照上述方法計算其相應的最佳值.如數列-1,2,3的最佳值為;數列3,-1,2的最佳值為1;….經過研究,東東發(fā)現,對于“2,-1,3”這三個數,按照不同的排列順序得到的不同數列中,最佳值的最小值為.根據以上材料,回答下列問題:
(1)數列-4,-3,1的最佳值為
(2)將“-4,-3,2”這三個數按照不同的順序排列,可得到若干個數列,這些數列的最佳值的最小值為 ,取得最佳值最小值的數列為 (寫出一個即可);
(3)將2,-9,a(a>1)這三個數按照不同的順序排列,可得到若干個數列.若這些數列的最佳值為1,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為獎勵學習之星,準備在某商店購買A、B兩種文具作為獎品,已知一件A種文具的價格比一件B種文具的價格便宜5元,且用600元買A種文具的件數是用400元買B種文具的件數的2倍.
(1)求一件A種文具的價格;
(2)根據需要,該校準備在該商店購買A、B兩種文具共150件.
①求購買A、B兩種文具所需經費W與購買A種文具的件數a之間的函數關系式;
②若購買A種文具的件數不多于B種文具件數的2倍,且計劃經費不超過2750元,求有幾種購買方案,并找出經費最少的方案,及最少需要多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com