如圖,在平面直角坐標(biāo)系中,已知點P(0,4),點A在線段OP上,點B在x軸正半軸上,且AP=OB=t, 0<t<4,以AB為邊在第一象限內(nèi)作正方形ABCD;過點C、D依次向x軸、y軸作垂線,垂足為M,N,設(shè)過O,C兩點的拋物線為y=ax2+bx+c.
(1)填空:△AOB≌△       ≌△BMC(不需證明);用含t的代數(shù)式表示A點縱坐標(biāo):A(0,       ;
(2)求點C的坐標(biāo),并用含a,t的代數(shù)式表示b;
(3)當(dāng)t=1時,連接OD,若此時拋物線與線段OD只有唯一的公共點O,求a的取值范圍;
(4)當(dāng)拋物線開口向上,對稱軸是直線,頂點隨著t的增大向上移動時,求t的取值范圍.
(1)DNA或△DPA;;(2)C(4,t),;(3)a>0或a<<a<0;(4)
0<t≤

試題分析:(1)根據(jù)全等三角形的判定定理SAS證得:△AOB≌△DNA或DPA≌△BMC;根據(jù)圖中相關(guān)線段間的和差關(guān)系來求點A的坐標(biāo):
∵∠DNA=∠AOB=90°,∴∠NAD=∠OBA(同角的余角相等).
在△AOB與△DNA中,∵,∴△AOB≌△DNA(SAS).
同理△DNA≌△BMC.
∵點P(0,4),AP=t,∴
(2)利用(1)中的全等三角形的對應(yīng)邊相等易推知:OM=OB+BM=t+=4,則C(4,t).把點O、C的坐標(biāo)分別代入拋物線y=ax2+bx+c可以求得確.
(3)利用待定系數(shù)法求得直線OD的解析式.與拋物線聯(lián)立方程組,解得x=0或
對于拋物線的開口方向進行分類討論,即a>0和a<0兩種情況下的a的取值范圍.
(4)根據(jù)拋物線的解析式得到頂點坐標(biāo)是.結(jié)合已知條件求得a=,故頂點坐標(biāo)為.由拋物線的性質(zhì)知:只與頂點坐標(biāo)有關(guān),故t的取值范圍為:0<t≤
試題解析:解:(1)DNA或△DPA;.
(2)由題意知,NA=OB=t,則OA=
∵△AOB≌△BMC,∴CM="OB=t." ∴OM=OB+BM=t+="4." ∴C(4,t).
又拋物線y=ax2+bx+c過點O、C,
,解得.
(3)當(dāng)t=1時,拋物線為,NA=OB=1,OA=3.
∵△AOB≌△DNA,∴DN=OA=3.
∵D(3,4),∴直線OD為:
聯(lián)立方程組,得,消去y,得
解得,x=0或.
所以,拋物線與直線OD總有兩個交點.
討論:①當(dāng)a>0時,>3,只有交點O,所以a>0符合題意;
②當(dāng)a<0時,若>3,則a<
<0,則得a>.∴<a<0.
綜上所述,a的取值范圍是a>0或a<<a<0.
(4)∵拋物線為,∴頂點坐標(biāo)是
又∵對稱軸是直線x=,∴a=.
∴頂點坐標(biāo)為:,即
∵拋物線開口向上,且隨著t的增大,拋物線的頂點向上移動,
∴只與頂點坐標(biāo)有關(guān),∴t的取值范圍為:0<t≤
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過點A(1,0),B(5,0),C(0,)三點,設(shè)點E(x,y)是拋物線上一動點,且在x軸下方,四邊形OEBF是以O(shè)B為對角線的平行四邊形.

(1)求拋物線的解析式;
(2)當(dāng)點E(x,y)運動時,試求平行四邊形OEBF的面積S與x之間的函數(shù)關(guān)系式,并求出面積S的最大值?
(3)是否存在這樣的點E,使平行四邊形OEBF為正方形?若存在,求E點,F(xiàn)點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商家計劃從廠家采購空調(diào)和冰箱兩種產(chǎn)品共20臺,空調(diào)的采購單價y1(元/臺)與采購數(shù)量x1(臺)滿足y1=﹣20x1+1500(0<x1≤20,x1為整數(shù));冰箱的采購單價y2(元/臺)與采購數(shù)量x2(臺)滿足y2=﹣10x2+1300(0<x2≤20,x2為整數(shù)).
(1)經(jīng)商家與廠家協(xié)商,采購空調(diào)的數(shù)量不少于冰箱數(shù)量的,且空調(diào)采購單價不低于1200元,問該商家共有幾種進貨方案?
(2)該商家分別以1760元/臺和1700元/臺的銷售單價售出空調(diào)和冰箱,且全部售完.在(1)的條件下,問采購空調(diào)多少臺時總利潤最大?并求最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,矩形OABC頂點B的坐標(biāo)為(8,3),定點D的坐標(biāo)為(12,0),動點P從點O出發(fā),以每秒2個單位長度的速度沿x軸的正方向勻速運動,動點Q從點D出發(fā),以每秒1個單位長度的速度沿x軸的負方向勻速運動,PQ兩點同時運動,相遇時停止.在運動過程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運動時間為t秒.
(1)當(dāng)t=    時,△PQR的邊QR經(jīng)過點B;
(2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過定點E(5,0)作EF⊥BC,垂足為F,當(dāng)△PQR的頂點R落在矩形OABC的內(nèi)部時,過點R作x軸、y軸的平行線,分別交EF、BC于點M、N,若∠MAN=45°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4與x軸的一個交點為A(-2,0),與y軸的交點為C,對稱軸是x=3,對稱軸與x軸交于點B.
(1)求拋物線的函數(shù)表達式;
(2)經(jīng)過B,C的直線l平移后與拋物線交于點M,與x軸交于點N,當(dāng)以B,C,M,N為頂點的四邊形是平行四邊形時,求出點M的坐標(biāo);
(3)若點D在x軸上,在拋物線上是否存在點P,使得△PBD≌△PBC?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知點A1,A2,…,A2011在函數(shù)位于第二象限的圖象上,點B1,B2,…,B2011在函數(shù)位于第一象限的圖象上,點C1,C2,…,C2011在y軸的正半軸上,若四邊形、,…,都是正方形,則正方形的邊長為
A.2010B.2011C.2010D.2011

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y=ax2+bx+c(a>0)的對稱軸為直線x=-1,與x軸的一個交點為(x1,0),且0<x1<1,下列結(jié)論:①9a-3b+c>0;②b<c;③3a+c>0,其中正確結(jié)論兩個數(shù)有______個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一段拋物線y=﹣x(x﹣1)(0≤x≤1)記為m1,它與x軸交點為O、A1,頂點為P1;將m1繞點A1旋轉(zhuǎn)180°得m2,交x軸于點A2,頂點為P2;將m2繞點A2旋轉(zhuǎn)180°得m3,交x軸于點A3,頂點為P3,…,如此進行下去,直至得m10,頂點為P10,則P10的坐標(biāo)為(     ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(-1,0)、(0,3),下列結(jié)論中錯誤的是(  )
A.a(chǎn)bc<0B.9a+3b+c=0C.a(chǎn)-b="-3" D. 4ac﹣b2<0

查看答案和解析>>

同步練習(xí)冊答案