如圖,一段拋物線y=﹣x(x﹣1)(0≤x≤1)記為m1,它與x軸交點為O、A1,頂點為P1;將m1繞點A1旋轉(zhuǎn)180°得m2,交x軸于點A2,頂點為P2;將m2繞點A2旋轉(zhuǎn)180°得m3,交x軸于點A3,頂點為P3,…,如此進行下去,直至得m10,頂點為P10,則P10的坐標為(     ).
(9.5,﹣0.25)

試題分析:y=﹣x(x﹣1)(0≤x≤1),
OA1=A1A2=1,P2P4=P1P3=2,
P2(1.5,﹣0.25)
P10的橫坐標是1.5+2×[(10﹣2)÷2]=9.5,
P10的縱坐標是﹣0.25,
故答案為(9.5,﹣0.25).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+x-2交x軸于A,B兩點(點A在點B的左側(cè)),交y軸于點C,分別過點B,C作y軸,x軸的平行線,兩平行線交于點D,將△BDC繞點C逆時針旋轉(zhuǎn),使點D旋轉(zhuǎn)到y(tǒng)軸上得到△FEC,連接BF.
(1)求點B,C所在直線的函數(shù)解析式;
(2)求△BCF的面積;
(3)在線段BC上是否存在點P,使得以點P,A,B為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,邊長為4的正方形ABCD中,點E在AB邊上(不與點A,B重合),點F在BC邊上(不與點B,C重合).
第一次操作:將線段EF繞點F順時針旋轉(zhuǎn),當點E落在正方形上時,記為點G;
第二次操作:將線段FG繞點G順時針旋轉(zhuǎn),當點F落在正方形上時,記為點H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為   ,求此時線段EF的長;
(2)若經(jīng)過三次操作可得到四邊形EFGH.
①請判斷四邊形EFGH的形狀為   ,此時AE與BF的數(shù)量關(guān)系是   
②以①中的結(jié)論為前提,設(shè)AE的長為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;
(3)若經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請直接寫出其邊長;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知點P(0,4),點A在線段OP上,點B在x軸正半軸上,且AP=OB=t, 0<t<4,以AB為邊在第一象限內(nèi)作正方形ABCD;過點C、D依次向x軸、y軸作垂線,垂足為M,N,設(shè)過O,C兩點的拋物線為y=ax2+bx+c.
(1)填空:△AOB≌△       ≌△BMC(不需證明);用含t的代數(shù)式表示A點縱坐標:A(0,       
(2)求點C的坐標,并用含a,t的代數(shù)式表示b;
(3)當t=1時,連接OD,若此時拋物線與線段OD只有唯一的公共點O,求a的取值范圍;
(4)當拋物線開口向上,對稱軸是直線,頂點隨著t的增大向上移動時,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中,拋物線經(jīng)過點(0,),(3,4).
(1)求拋物線的表達式及對稱軸;
(2)設(shè)點關(guān)于原點的對稱點為,點是拋物線對稱軸上一動點,記拋物線在之間的部分為圖象(包含,兩點).若直線與圖象有公共點,結(jié)合函數(shù)圖像,求點縱坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線軸交于點A,B,與y軸交于點C,其中點B的坐標為.
(1)求拋物線對應(yīng)的函數(shù)表達式;]
(2)將(1)中的拋物線沿對稱軸向上平移,使其頂點M落在線段BC上,記該拋物線為G,求拋物線G所對應(yīng)的函數(shù)表達式;
(3)將線段BC平移得到線段(B的對應(yīng)點為,C的對應(yīng)點為),使其經(jīng)過(2)中所得拋物線G的頂點M,且與拋物線G另有一個交點N,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中,已知拋物線 (b,c為常數(shù))的頂點為P,等腰直角三角形ABC的頂點A的坐標為(0,–1),C的坐標為(4,3),直角頂點B在第四象限.
(1)如圖,若該拋物線過A,B兩點,求b,c的值;
(2)平移(1)中的拋物線,使頂點P在直線AC上滑動,且與直線AC交于另一點Q.
①點M在直線AC下方,且為平移前(1)中的拋物線上的點,當以M,P,Q三點為頂點的三角形是以PQ為腰的等腰直角三角形時,求點M的坐標;
②取BC的中點N,連接NP,BQ.當取最大值時,點Q的坐標為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于拋物線y=x2-2x,下列說法正確的是( 。
A.頂點是坐標原點B.對稱軸是直線x=2
C.有最高點D.經(jīng)過坐標原點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

把拋物線y=﹣2x2先向右平移1個單位長度,再向上平移2個單位長度后,所得函數(shù)的表達式為( 。
A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2
C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣2

查看答案和解析>>

同步練習(xí)冊答案