如圖,⊙O′過坐標(biāo)原點,點O′的坐標(biāo)為(1,1),試判斷點P(-1,1),點Q(1,0),點R(2,2)與⊙O′的位置關(guān)系.
分析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.
解答:解:圓的半徑是
12+12
=
2

PO′=2>
2
,則P在⊙O′的外部;
QO′=1<
2
,則Q在⊙O′的內(nèi)部;
RO′=
(2-1)2+(2-1)2
=
2
,則R在圓上.
點評:本題考查了點與圓的位置關(guān)系定理和勾股定理等知識點的應(yīng)用,點與圓(圓的半徑是r,點到圓心的距離是d)的位置關(guān)系有3種:d=r時,點在圓上;d<r點在圓內(nèi);d>r點在圓外.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,直線y=-
1
2
x+6與x軸、y軸分別交于B、C兩點.
(1)直接寫出B、C兩點的坐標(biāo);
(2)直線y=x與直線y=-
1
2
x+6交于點A,動點P從點O沿OA方向以每秒1個單位的速度運動,設(shè)運動時間為t秒(即OP=t).過點P作PQ∥x軸交直線BC于點Q.
①若點P在線段OA上運動時(如圖1),過P、Q分別作x軸的垂線,垂足分別為N、M,設(shè)矩形PQMN的面積為S,寫出S和t之間的函數(shù)關(guān)系式,并求出S的最大值.
②若點P經(jīng)過點A后繼續(xù)按原方向、原速度運動,當(dāng)運動時間t為何值時,過P、Q、O三點的圓與x軸相切?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,直線y=-數(shù)學(xué)公式x+6與x軸、y軸分別交于B、C兩點.
(1)直接寫出B、C兩點的坐標(biāo);
(2)直線y=x與直線y=-數(shù)學(xué)公式x+6交于點A,動點P從點O沿OA方向以每秒1個單位的速度運動,設(shè)運動時間為t秒(即OP=t).過點P作PQ∥x軸交直線BC于點Q.
①若點P在線段OA上運動時(如圖1),過P、Q分別作x軸的垂線,垂足分別為N、M,設(shè)矩形PQMN的面積為S,寫出S和t之間的函數(shù)關(guān)系式,并求出S的最大值.
②若點P經(jīng)過點A后繼續(xù)按原方向、原速度運動,當(dāng)運動時間t為何值時,過P、Q、O三點的圓與x軸相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年山東省濟(jì)南市中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

在平面直角坐標(biāo)系中,直線y=-x+6與x軸、y軸分別交于B、C兩點.
(1)直接寫出B、C兩點的坐標(biāo);
(2)直線y=x與直線y=-x+6交于點A,動點P從點O沿OA方向以每秒1個單位的速度運動,設(shè)運動時間為t秒(即OP=t).過點P作PQ∥x軸交直線BC于點Q.
①若點P在線段OA上運動時(如圖1),過P、Q分別作x軸的垂線,垂足分別為N、M,設(shè)矩形PQMN的面積為S,寫出S和t之間的函數(shù)關(guān)系式,并求出S的最大值.
②若點P經(jīng)過點A后繼續(xù)按原方向、原速度運動,當(dāng)運動時間t為何值時,過P、Q、O三點的圓與x軸相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年山東省濟(jì)南市市中區(qū)中考數(shù)學(xué)三模試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系中,直線y=-x+6與x軸、y軸分別交于B、C兩點.
(1)直接寫出B、C兩點的坐標(biāo);
(2)直線y=x與直線y=-x+6交于點A,動點P從點O沿OA方向以每秒1個單位的速度運動,設(shè)運動時間為t秒(即OP=t).過點P作PQ∥x軸交直線BC于點Q.
①若點P在線段OA上運動時(如圖1),過P、Q分別作x軸的垂線,垂足分別為N、M,設(shè)矩形PQMN的面積為S,寫出S和t之間的函數(shù)關(guān)系式,并求出S的最大值.
②若點P經(jīng)過點A后繼續(xù)按原方向、原速度運動,當(dāng)運動時間t為何值時,過P、Q、O三點的圓與x軸相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年四川省巴中市平昌縣初中學(xué)業(yè)質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系中,直線y=-x+6與x軸、y軸分別交于B、C兩點.
(1)直接寫出B、C兩點的坐標(biāo);
(2)直線y=x與直線y=-x+6交于點A,動點P從點O沿OA方向以每秒1個單位的速度運動,設(shè)運動時間為t秒(即OP=t).過點P作PQ∥x軸交直線BC于點Q.
①若點P在線段OA上運動時(如圖1),過P、Q分別作x軸的垂線,垂足分別為N、M,設(shè)矩形PQMN的面積為S,寫出S和t之間的函數(shù)關(guān)系式,并求出S的最大值.
②若點P經(jīng)過點A后繼續(xù)按原方向、原速度運動,當(dāng)運動時間t為何值時,過P、Q、O三點的圓與x軸相切?

查看答案和解析>>

同步練習(xí)冊答案