已知,如圖,四邊形ABCD是正方形,E、F分別是AB和AD延長線上的點,且BE=DF.求證:CE=CF.

【答案】分析:在△CDF和△CBE中,根據(jù)DC=BC,DF=BE且正方形各內(nèi)角為直角可以求證△CDF≌△CBF,即可證明CE=CF.
解答:證明:在△CDF和△CBE中,∠CDA=90°,∴∠CDF=90°
∴∠CDF=∠CBE=90°,
在△CDF和△CBE中,
,
∴△CDF≌△CBE,
∴CF=CE.
點評:本題考查了正方形各邊相等、各內(nèi)角相等的性質,考查了全等三角形的判定和對應邊相等的性質,本題中證明△CDF≌△CBE是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,四邊形ABCD中∠B=90°,AB=9,BC=12,AD=8,CD=17.
試求:(1)AC的長;(2)四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,四邊形ABCD內(nèi)接于⊙O,且AB∥CD,AD∥BC,
求證:四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,四邊形ABCD是正方形,E、F分別是AB和AD延長線上的點,且BE=DF
(1)求證:CE=CF;
(2)求∠CEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,四邊形ABCD中,BC=CD=10,AB=15,AB⊥BC,CD⊥BC,若把四邊形ABCD繞直線AB旋轉一周,則所得幾何體的表面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,四邊形ABCD及一點P.
求作:四邊形A′B′C′D′,使得它是由四邊形ABCD繞P點順時針旋轉150°得到的.

查看答案和解析>>

同步練習冊答案