如圖,平行四邊形ABCD中,E、F分別是BC、AD邊上的點,四邊形AECF是⊙O的內接四邊形,且AC是⊙O的直徑.
(1)求證:BE=DF;
(2)若BA與⊙O相切,BC=10cm,BE:CE=3:2,求AC的長.

(1)證明:∵四邊形ABCD為平行四邊形,
∴AB=CD,∠B=∠D,
∵AC是⊙O的直徑,
∴∠AEC=∠AFC=90°,
∴∠AEB=∠CFD=90°,
在△ABE和△CDF中
,
∴△ABE≌△CDF,
∴BE=DF;
(2)解:∵BA與⊙O相切,
∴∠BAC=90°,
∵BC=10cm,BE:CE=3:2,
∴CE=4cm,
∵∠ACE=∠BCA,
∴Rt△CAE∽Rt△CBA,
∴CA:CB=CE:CA,即CA:10=4:CA,
∴CA=2(cm).
分析:(1)根據(jù)平行四邊形的性質得到AB=CD,∠B=∠D,再根據(jù)圓周角定理得到∠AEB=∠CFD=90°,則可利用“AAS”判斷△ABE≌△CDF,所以BE=DF;
(2)根據(jù)切線的性質得∠BAC=90°,由于BC=10cm,BE:CE=3:2,則CE=4cm,再證明Rt△CAE∽Rt△CBA,所以CA:CB=CE:CA,即CA:10=4:CA,然后解方程得到AC的長.
點評:本題考查了切線的性質:圓的切線垂直于過切點的半徑.也考查了圓周角定理、平行四邊形的性質以及三角形全等、相似的判定與性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關于x的一元二精英家教網次方程x2-7x+12=0的兩個根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點,且S△AOE=
16
3
,求經過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標系內,則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點,AB=3,ED=1,則平行四邊形ABCD的周長是
14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC、BD相交于點O,將直線AC繞點O順時針旋轉一定角度后,分別交BC、AD于點E、F.
精英家教網
(1)試說明在旋轉過程中,線段AF與EC總保持相等;
(2)當旋轉角為90°時,在圖2中畫出直線AC旋轉后的位置并證明此時四邊形ABEF是平行四邊形;
(3)在直線AC旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉的度數(shù).(圖供畫圖或解釋時使用)
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,平行四邊形ABCD中,對角線AC和BD相交于點O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD的兩條對角線AC、BD相交于點O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長為
20
20

查看答案和解析>>

同步練習冊答案