如圖,在平面直角坐標系中,拋物線經(jīng)過A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圓,M為圓心.
(1)求拋物線的解析式;
(2)求陰影部分的面積;
(3)在x軸的正半軸上有一點P,作PQ⊥x軸交BC于Q,設PQ=k,△CPQ的面積為S,求S關于k的函數(shù)關系式,并求出S的最大值.

【答案】分析:(1)已知了A、B、C三點坐標可用待定系數(shù)法求出拋物線的解析式.
(2)要求扇形的面積需要知道半徑的長和扇形的圓心角的度數(shù),先求圓心角∠AMC的度數(shù),由于OB=OC,因此∠ABC=45°,根據(jù)圓周角定理可得出∠AMC=90°.再求半徑,由于三角形AMC是等腰直角三角形,因此半徑的平方等于AC的平方的一半,可在直角三角形OAC中求出AC的平方,據(jù)此可根據(jù)扇形的面積公式求出扇形的面積.
(3)求三角形CPQ的面積可以PQ為底,以OP為高,已知了PQ=k,在等腰直角三角形BPQ中,BP=PQ=k,也就能表示長OP的長,據(jù)此可求出S與k的函數(shù)關系,根據(jù)函數(shù)的性質(zhì)即可求出S的最大值.
解答:解:(1)由拋物線經(jīng)過A(-1,0),B(4,0),
設拋物線的解析式為:y=a(x+1)(x-4),
將C(0,-4)代入上式中,得-4a=-4,a=1.
∴y=(x+1)(x-4)=x2-3x-4.

(2)∵A(-1,0),B(4,0),C(0,-4).
∴OB=OC=4,OA=1
∴∠OBC=45°,∴∠AMC=90°
∴AM2+MC2=OA2+OC2=12+42=17
∴AM2=CM2=,
∴S陰影==π.

(3)∠OBC=45°,PQ⊥x軸;
∴BP=PQ=k,
∴S=k•(4-k)=-k2+2k.
∴當k=2時,Smax=2.
點評:本題考查了二次函數(shù)解析式的確定、扇形面積計算公式、等腰直角三角形的性質(zhì)等知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案